Mingyi Ma , Zhongjun Pan , Ziye Zhu , Chen Ling , Jiahao Yuan , Xiangdong Huo , Shasha Li , Ruijiang Liu
{"title":"Enhanced cancer therapy using modified magnetic α-Fe2O3/Fe3O4 nanorods: Dual role in curcumin delivery and ferroptosis induction","authors":"Mingyi Ma , Zhongjun Pan , Ziye Zhu , Chen Ling , Jiahao Yuan , Xiangdong Huo , Shasha Li , Ruijiang Liu","doi":"10.1016/j.colsurfb.2025.114689","DOIUrl":null,"url":null,"abstract":"<div><div>Curcumin (CUR) has gained considerable attention in oncology due to its potent anti-tumor, anti-inflammatory, and antioxidant properties. However, its clinical utility was significantly hindered by low bioavailability and rapid metabolic degradation. This work designed a magnetic α-Fe<sub>2</sub>O<sub>3</sub>/Fe<sub>3</sub>O<sub>4</sub> heterogeneous nanorod prepared via a urea hydrolysis-calcination process for curcumin delivery. The nanorods were modified with hyaluronic acid (HA), providing a stable matrix for curcumin encapsulation. The zeta potential of α-Fe<sub>2</sub>O<sub>3</sub>/Fe<sub>3</sub>O<sub>4</sub>/HA/CUR was −3.94 mV, the saturation magnetization was 7.82 emu·g<sup>−1</sup>, the encapsulation rate and drug loading rate were 10.53 % and 29.64 % respectively. At pH 5.4, 6.5, and 7.4, the release rates were 44.8 %, 40.2 %, and 39.3 %, respectively. Kinetic modeling indicated that release profiles followed the Weibull kinetic model, with an R<sup>2</sup> value greater than 0.98. The α-Fe<sub>2</sub>O<sub>3</sub>/Fe<sub>3</sub>O<sub>4</sub>/HA/CUR exhibited excellent magnetic responsiveness, demonstrating a significant inhibitory effect on human liver cancer (HepG2) cells (inhibition rate greater than 60 %) under a magnetic field. Moreover, they substantially reduced the cytotoxicity of curcumin on normal human (LO2) cells. The α-Fe<sub>2</sub>O<sub>3</sub>/Fe<sub>3</sub>O<sub>4</sub>/HA/CUR inhibited migration and proliferation of HepG2 cells, induced apoptosis via the Caspase pathway, and synergistically suppressed tumor cell development through ferroptosis. The drug release from the α-Fe<sub>2</sub>O<sub>3</sub>/Fe<sub>3</sub>O<sub>4</sub>/HA/CUR was stable, significantly enhancing the bioavailability of curcumin. This provided a promising strategy for improving the bioavailability of poorly soluble drugs and enhancing liver cancer treatment outcomes.</div></div>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"252 ","pages":"Article 114689"},"PeriodicalIF":5.4000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces B: Biointerfaces","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927776525001961","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Curcumin (CUR) has gained considerable attention in oncology due to its potent anti-tumor, anti-inflammatory, and antioxidant properties. However, its clinical utility was significantly hindered by low bioavailability and rapid metabolic degradation. This work designed a magnetic α-Fe2O3/Fe3O4 heterogeneous nanorod prepared via a urea hydrolysis-calcination process for curcumin delivery. The nanorods were modified with hyaluronic acid (HA), providing a stable matrix for curcumin encapsulation. The zeta potential of α-Fe2O3/Fe3O4/HA/CUR was −3.94 mV, the saturation magnetization was 7.82 emu·g−1, the encapsulation rate and drug loading rate were 10.53 % and 29.64 % respectively. At pH 5.4, 6.5, and 7.4, the release rates were 44.8 %, 40.2 %, and 39.3 %, respectively. Kinetic modeling indicated that release profiles followed the Weibull kinetic model, with an R2 value greater than 0.98. The α-Fe2O3/Fe3O4/HA/CUR exhibited excellent magnetic responsiveness, demonstrating a significant inhibitory effect on human liver cancer (HepG2) cells (inhibition rate greater than 60 %) under a magnetic field. Moreover, they substantially reduced the cytotoxicity of curcumin on normal human (LO2) cells. The α-Fe2O3/Fe3O4/HA/CUR inhibited migration and proliferation of HepG2 cells, induced apoptosis via the Caspase pathway, and synergistically suppressed tumor cell development through ferroptosis. The drug release from the α-Fe2O3/Fe3O4/HA/CUR was stable, significantly enhancing the bioavailability of curcumin. This provided a promising strategy for improving the bioavailability of poorly soluble drugs and enhancing liver cancer treatment outcomes.
期刊介绍:
Colloids and Surfaces B: Biointerfaces is an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin, having particular relevance to the medical, pharmaceutical, biotechnological, food and cosmetic fields.
Submissions that: (1) deal solely with biological phenomena and do not describe the physico-chemical or colloid-chemical background and/or mechanism of the phenomena, and (2) deal solely with colloid/interfacial phenomena and do not have appropriate biological content or relevance, are outside the scope of the journal and will not be considered for publication.
The journal publishes regular research papers, reviews, short communications and invited perspective articles, called BioInterface Perspectives. The BioInterface Perspective provide researchers the opportunity to review their own work, as well as provide insight into the work of others that inspired and influenced the author. Regular articles should have a maximum total length of 6,000 words. In addition, a (combined) maximum of 8 normal-sized figures and/or tables is allowed (so for instance 3 tables and 5 figures). For multiple-panel figures each set of two panels equates to one figure. Short communications should not exceed half of the above. It is required to give on the article cover page a short statistical summary of the article listing the total number of words and tables/figures.