Rongjian Liu , Dongqiong Wei , Xuan Ma , Jiamin Shi , Yan Hu , Samra , Cong Yuan , Yongmei Qi , Dejun Huang
{"title":"Chlorophenols suppress gametogenesis by disrupting sex hormone signaling through DNA methylation in zebrafish","authors":"Rongjian Liu , Dongqiong Wei , Xuan Ma , Jiamin Shi , Yan Hu , Samra , Cong Yuan , Yongmei Qi , Dejun Huang","doi":"10.1016/j.envpol.2025.126221","DOIUrl":null,"url":null,"abstract":"<div><div>Chlorophenols (CPs) are toxic pollutants widely present in the water environment. Yet their specific influence on gametogenesis remains unclear. This study investigated the impact of 2,4-dichlorophenol and pentachlorophenol on the gametogenesis of zebrafish. Results showed reduced egg production and sperm density in CP-exposed zebrafish, with an increase in the proportion of early germ cells and a decrease in mature germ cells. Additionally, the expression of gametogenesis-related genes (<em>nanos3</em>, <em>ccnd1</em>, <em>dmc1</em>) was upregulated, together confirming CPs suppress gametogenesis. The study also assessed the effects of CPs on sex hormone signaling, revealing altered ratios of estradiol to 11-ketotestosterone and changed expression of hormone receptors (<em>esrs</em> and <em>ar</em>). Besides, the hypothalamic-pituitary-gonadal axis genes showed significantly change, indicating the disorder of sex hormone signaling. Moreover, CPs increased DNA methylation levels in gonads, especially at CpG sites in the <em>ar</em> promoter, which negatively correlated with <em>ar</em> expression. Furthermore, elevated DNA methyltransferase (<em>dnmts</em>) expression was observed, and there was a significant interaction between CPs and Dnmts, suggesting CPs influence DNA methylation pathways. Overall, CPs inhibit gametogenesis by disrupting hormone signaling through DNA methylation. This study provides a new perspective on the toxic mechanisms and the risks posed by CPs to aquatic organisms.</div></div>","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":"374 ","pages":"Article 126221"},"PeriodicalIF":7.6000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Pollution","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0269749125005949","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Chlorophenols (CPs) are toxic pollutants widely present in the water environment. Yet their specific influence on gametogenesis remains unclear. This study investigated the impact of 2,4-dichlorophenol and pentachlorophenol on the gametogenesis of zebrafish. Results showed reduced egg production and sperm density in CP-exposed zebrafish, with an increase in the proportion of early germ cells and a decrease in mature germ cells. Additionally, the expression of gametogenesis-related genes (nanos3, ccnd1, dmc1) was upregulated, together confirming CPs suppress gametogenesis. The study also assessed the effects of CPs on sex hormone signaling, revealing altered ratios of estradiol to 11-ketotestosterone and changed expression of hormone receptors (esrs and ar). Besides, the hypothalamic-pituitary-gonadal axis genes showed significantly change, indicating the disorder of sex hormone signaling. Moreover, CPs increased DNA methylation levels in gonads, especially at CpG sites in the ar promoter, which negatively correlated with ar expression. Furthermore, elevated DNA methyltransferase (dnmts) expression was observed, and there was a significant interaction between CPs and Dnmts, suggesting CPs influence DNA methylation pathways. Overall, CPs inhibit gametogenesis by disrupting hormone signaling through DNA methylation. This study provides a new perspective on the toxic mechanisms and the risks posed by CPs to aquatic organisms.
期刊介绍:
Environmental Pollution is an international peer-reviewed journal that publishes high-quality research papers and review articles covering all aspects of environmental pollution and its impacts on ecosystems and human health.
Subject areas include, but are not limited to:
• Sources and occurrences of pollutants that are clearly defined and measured in environmental compartments, food and food-related items, and human bodies;
• Interlinks between contaminant exposure and biological, ecological, and human health effects, including those of climate change;
• Contaminants of emerging concerns (including but not limited to antibiotic resistant microorganisms or genes, microplastics/nanoplastics, electronic wastes, light, and noise) and/or their biological, ecological, or human health effects;
• Laboratory and field studies on the remediation/mitigation of environmental pollution via new techniques and with clear links to biological, ecological, or human health effects;
• Modeling of pollution processes, patterns, or trends that is of clear environmental and/or human health interest;
• New techniques that measure and examine environmental occurrences, transport, behavior, and effects of pollutants within the environment or the laboratory, provided that they can be clearly used to address problems within regional or global environmental compartments.