Geotechnical subsoil modelling of a slope from the interpretation of ambient noise measurements and 2D site response analyses

IF 4.2 2区 工程技术 Q1 ENGINEERING, GEOLOGICAL
Gaetano Falcone , Annamaria di Lernia , Giuseppe Calamita , Maria Rosaria Gallipoli , Angela Perrone , Sabatino Piscitelli , Jessica Bellanova , Francesco Cafaro , Gaetano Elia
{"title":"Geotechnical subsoil modelling of a slope from the interpretation of ambient noise measurements and 2D site response analyses","authors":"Gaetano Falcone ,&nbsp;Annamaria di Lernia ,&nbsp;Giuseppe Calamita ,&nbsp;Maria Rosaria Gallipoli ,&nbsp;Angela Perrone ,&nbsp;Sabatino Piscitelli ,&nbsp;Jessica Bellanova ,&nbsp;Francesco Cafaro ,&nbsp;Gaetano Elia","doi":"10.1016/j.soildyn.2025.109431","DOIUrl":null,"url":null,"abstract":"<div><div>Within the context of seismic risk assessment, the prediction of the dynamic response of natural slopes is strictly related to the accurate definition of the geotechnical subsoil model. This aspect is particularly challenging for those slopes characterised by the presence of buried morphologies, for which the vertical and lateral heterogeneities of the subsoil setting may predispose them to additional risks during seismic events. The paper proposes a methodological procedure aimed at identifying preliminary subsoil models of areas characterised by uneven topography and buried lithological bodies of uncertain morphology, through the comparison of parametric site response analyses and site-specific geophysical surveys. The procedure, tested with reference to the prototype case study of Costa del Canneto slope in Southern Italy, proves to be a useful tool to reduce the uncertainties associated with the presence of complex subsoil settings, including potential buried morphologies. Indeed, over several geotechnical models tested, the numerical analyses provide amplification profiles of the fundamental frequency reasonably comparable with data from ambient vibration measurements only for few of them. This allows to restrict the number of possible slope models and can be used to guide the design of additional in-situ geotechnical investigations needed to better characterise the stratigraphy of the area and constrain the geometry of the expected buried morphologies.</div></div>","PeriodicalId":49502,"journal":{"name":"Soil Dynamics and Earthquake Engineering","volume":"195 ","pages":"Article 109431"},"PeriodicalIF":4.2000,"publicationDate":"2025-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Dynamics and Earthquake Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0267726125002246","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Within the context of seismic risk assessment, the prediction of the dynamic response of natural slopes is strictly related to the accurate definition of the geotechnical subsoil model. This aspect is particularly challenging for those slopes characterised by the presence of buried morphologies, for which the vertical and lateral heterogeneities of the subsoil setting may predispose them to additional risks during seismic events. The paper proposes a methodological procedure aimed at identifying preliminary subsoil models of areas characterised by uneven topography and buried lithological bodies of uncertain morphology, through the comparison of parametric site response analyses and site-specific geophysical surveys. The procedure, tested with reference to the prototype case study of Costa del Canneto slope in Southern Italy, proves to be a useful tool to reduce the uncertainties associated with the presence of complex subsoil settings, including potential buried morphologies. Indeed, over several geotechnical models tested, the numerical analyses provide amplification profiles of the fundamental frequency reasonably comparable with data from ambient vibration measurements only for few of them. This allows to restrict the number of possible slope models and can be used to guide the design of additional in-situ geotechnical investigations needed to better characterise the stratigraphy of the area and constrain the geometry of the expected buried morphologies.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Soil Dynamics and Earthquake Engineering
Soil Dynamics and Earthquake Engineering 工程技术-地球科学综合
CiteScore
7.50
自引率
15.00%
发文量
446
审稿时长
8 months
期刊介绍: The journal aims to encourage and enhance the role of mechanics and other disciplines as they relate to earthquake engineering by providing opportunities for the publication of the work of applied mathematicians, engineers and other applied scientists involved in solving problems closely related to the field of earthquake engineering and geotechnical earthquake engineering. Emphasis is placed on new concepts and techniques, but case histories will also be published if they enhance the presentation and understanding of new technical concepts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信