Lipoic acid assisted microwave based synthesis of Au-Ag nanoclusters with tunable fluorescence for antimicrobial and bioimaging applications

IF 4.3 2区 化学 Q1 SPECTROSCOPY
Deepika Sharma , Rohit Sharma , Pankaj Sharma , Nishima Wangoo , Rohit K. Sharma
{"title":"Lipoic acid assisted microwave based synthesis of Au-Ag nanoclusters with tunable fluorescence for antimicrobial and bioimaging applications","authors":"Deepika Sharma ,&nbsp;Rohit Sharma ,&nbsp;Pankaj Sharma ,&nbsp;Nishima Wangoo ,&nbsp;Rohit K. Sharma","doi":"10.1016/j.saa.2025.126212","DOIUrl":null,"url":null,"abstract":"<div><div>This study reports on the pioneering synthesis and application of monometallic lipoic acid (LA) stabilized gold nanoclusters (LA@AuNCs) and bimetallic gold-silver nanoclusters (LA@Au-AgNCs) fabricated via a novel microwave-assisted method. The synthesis process unveils a significant augmentation in the quantum yield of LA@AuAgNCs up to 7.9-fold compared to their monometallic counterparts (LA@Au NCs), showcasing the efficacy of the novel microwave-assisted fabrication methodology. The rapid synthesis facilitated by microwave heating not only ensures efficiency but also contributes to superior optical properties. Additionally, the strategic modulation of exogenous parameters, such as thermal conditions and ionic metal concentrations, was leveraged to meticulously engineer the nanocluster surface characteristics, facilitating the procurement of tunable photoluminescent emission spectra spanning from 650 to 800 nm. The applicability of the synthesized metallic nanoclusters has been rigorously evaluated, demonstrating their efficacy as a dual-functional therapeutic agent. Primarily, their antimicrobial properties are pronounced against both Gram-positive and Gram-negative bacterial strains, attributed to the ultrasmall dimensions of the synthesized nanoclusters. Also, these intrinsically fluorescent metallic nanoclusters were employed as advanced bioimaging probes for the precise labelling and visualization of bacterial cells.</div></div>","PeriodicalId":433,"journal":{"name":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","volume":"338 ","pages":"Article 126212"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386142525005189","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 0

Abstract

This study reports on the pioneering synthesis and application of monometallic lipoic acid (LA) stabilized gold nanoclusters (LA@AuNCs) and bimetallic gold-silver nanoclusters (LA@Au-AgNCs) fabricated via a novel microwave-assisted method. The synthesis process unveils a significant augmentation in the quantum yield of LA@AuAgNCs up to 7.9-fold compared to their monometallic counterparts (LA@Au NCs), showcasing the efficacy of the novel microwave-assisted fabrication methodology. The rapid synthesis facilitated by microwave heating not only ensures efficiency but also contributes to superior optical properties. Additionally, the strategic modulation of exogenous parameters, such as thermal conditions and ionic metal concentrations, was leveraged to meticulously engineer the nanocluster surface characteristics, facilitating the procurement of tunable photoluminescent emission spectra spanning from 650 to 800 nm. The applicability of the synthesized metallic nanoclusters has been rigorously evaluated, demonstrating their efficacy as a dual-functional therapeutic agent. Primarily, their antimicrobial properties are pronounced against both Gram-positive and Gram-negative bacterial strains, attributed to the ultrasmall dimensions of the synthesized nanoclusters. Also, these intrinsically fluorescent metallic nanoclusters were employed as advanced bioimaging probes for the precise labelling and visualization of bacterial cells.

Abstract Image

硫辛酸辅助微波合成具有可调荧光的Au-Ag纳米团簇用于抗菌和生物成像应用
本文报道了单金属硫辛酸(LA)稳定金纳米团簇(LA@AuNCs)和双金属金-银纳米团簇(LA@Au-AgNCs)的开创性合成和应用。合成过程揭示了LA@AuAgNCs的量子产率比单金属纳米材料(LA@Au纳米材料)的量子产率提高了7.9倍,展示了新型微波辅助制造方法的有效性。微波加热的快速合成不仅保证了效率,而且具有优异的光学性能。此外,利用外源参数(如热条件和离子金属浓度)的战略性调制,精心设计了纳米团簇的表面特性,促进了650至800 nm范围内可调谐的光致发光发射光谱的获取。合成的金属纳米团簇的适用性已被严格评估,证明了它们作为双功能治疗剂的功效。首先,由于合成的纳米团簇的超小尺寸,它们对革兰氏阳性和革兰氏阴性细菌菌株的抗菌性能都很明显。此外,这些本质荧光金属纳米团簇被用作先进的生物成像探针,用于细菌细胞的精确标记和可视化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.40
自引率
11.40%
发文量
1364
审稿时长
40 days
期刊介绍: Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy (SAA) is an interdisciplinary journal which spans from basic to applied aspects of optical spectroscopy in chemistry, medicine, biology, and materials science. The journal publishes original scientific papers that feature high-quality spectroscopic data and analysis. From the broad range of optical spectroscopies, the emphasis is on electronic, vibrational or rotational spectra of molecules, rather than on spectroscopy based on magnetic moments. Criteria for publication in SAA are novelty, uniqueness, and outstanding quality. Routine applications of spectroscopic techniques and computational methods are not appropriate. Topics of particular interest of Spectrochimica Acta Part A include, but are not limited to: Spectroscopy and dynamics of bioanalytical, biomedical, environmental, and atmospheric sciences, Novel experimental techniques or instrumentation for molecular spectroscopy, Novel theoretical and computational methods, Novel applications in photochemistry and photobiology, Novel interpretational approaches as well as advances in data analysis based on electronic or vibrational spectroscopy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信