A novel 3D-printed electrochemical cell for operando synchrotron experiments

Niklas H. Deissler , Valentin Vinci , Jon Bjarke Valbæk Mygind , Xianbiao Fu , Shaofeng Li , Jakob Kibsgaard , Jakub Drnec , Ib Chorkendorff
{"title":"A novel 3D-printed electrochemical cell for operando synchrotron experiments","authors":"Niklas H. Deissler ,&nbsp;Valentin Vinci ,&nbsp;Jon Bjarke Valbæk Mygind ,&nbsp;Xianbiao Fu ,&nbsp;Shaofeng Li ,&nbsp;Jakob Kibsgaard ,&nbsp;Jakub Drnec ,&nbsp;Ib Chorkendorff","doi":"10.1016/j.nxener.2025.100279","DOIUrl":null,"url":null,"abstract":"<div><div>Electrochemical processes are often accompanied by significant transformations at the electrode-electrolyte interface, such as the formation of a solid electrolyte interphase or surface reconstruction. Studying these dynamic changes requires operando characterization techniques to overcome the limitations of ex-situ methods. Here, we present a novel, versatile electrochemical cell optimized for operando synchrotron X-ray studies of the lithium-mediated nitrogen reduction reaction. The cell integrates a single-crystal working electrode with a gas diffusion counter electrode, enabling enhanced faradaic efficiencies (FEs) and operando measurements under conditions that closely resemble scalable flow systems. The cell design improves N₂ availability and suppresses undesirable counter electrode reactions through the hydrogen oxidation reaction, achieving FEs of up to 37% for ammonia production. Fabrication by 3D-printing polyether ether ketone allows for complex electrolyte flow geometries while maintaining minimal X-ray background interference, critical for X-ray-based techniques. The combination of single-crystal electrodes and optimized flow conditions offers a promising platform for investigating fundamental electrochemical processes under realistic and scalable conditions.</div></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":"8 ","pages":"Article 100279"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949821X25000420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Electrochemical processes are often accompanied by significant transformations at the electrode-electrolyte interface, such as the formation of a solid electrolyte interphase or surface reconstruction. Studying these dynamic changes requires operando characterization techniques to overcome the limitations of ex-situ methods. Here, we present a novel, versatile electrochemical cell optimized for operando synchrotron X-ray studies of the lithium-mediated nitrogen reduction reaction. The cell integrates a single-crystal working electrode with a gas diffusion counter electrode, enabling enhanced faradaic efficiencies (FEs) and operando measurements under conditions that closely resemble scalable flow systems. The cell design improves N₂ availability and suppresses undesirable counter electrode reactions through the hydrogen oxidation reaction, achieving FEs of up to 37% for ammonia production. Fabrication by 3D-printing polyether ether ketone allows for complex electrolyte flow geometries while maintaining minimal X-ray background interference, critical for X-ray-based techniques. The combination of single-crystal electrodes and optimized flow conditions offers a promising platform for investigating fundamental electrochemical processes under realistic and scalable conditions.
一种用于操作同步加速器实验的新型3d打印电化学电池
电化学过程通常伴随着电极-电解质界面的显著转变,如固体电解质界面相的形成或表面重构。研究这些动态变化需要operando表征技术来克服非原位方法的局限性。在这里,我们提出了一种新型的,多功能的电化学电池,用于锂介导的氮还原反应的operando同步加速器x射线研究。该电池集成了一个单晶工作电极和一个气体扩散反电极,能够在类似于可扩展流动系统的条件下提高法拉第效率(FEs)和操作度测量。该电池设计提高了N₂的可用性,并通过氢氧化反应抑制了不良的对电极反应,实现了高达37%的氨生产的FEs。通过3d打印聚醚醚酮制造允许复杂的电解质流动几何形状,同时保持最小的x射线背景干扰,这对基于x射线的技术至关重要。单晶电极和优化流动条件的结合为在现实和可扩展的条件下研究基本电化学过程提供了一个有前途的平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信