A novel 3D-printed electrochemical cell for operando synchrotron experiments

Niklas H. Deissler , Valentin Vinci , Jon Bjarke Valbæk Mygind , Xianbiao Fu , Shaofeng Li , Jakob Kibsgaard , Jakub Drnec , Ib Chorkendorff
{"title":"A novel 3D-printed electrochemical cell for operando synchrotron experiments","authors":"Niklas H. Deissler ,&nbsp;Valentin Vinci ,&nbsp;Jon Bjarke Valbæk Mygind ,&nbsp;Xianbiao Fu ,&nbsp;Shaofeng Li ,&nbsp;Jakob Kibsgaard ,&nbsp;Jakub Drnec ,&nbsp;Ib Chorkendorff","doi":"10.1016/j.nxener.2025.100279","DOIUrl":null,"url":null,"abstract":"<div><div>Electrochemical processes are often accompanied by significant transformations at the electrode-electrolyte interface, such as the formation of a solid electrolyte interphase or surface reconstruction. Studying these dynamic changes requires operando characterization techniques to overcome the limitations of ex-situ methods. Here, we present a novel, versatile electrochemical cell optimized for operando synchrotron X-ray studies of the lithium-mediated nitrogen reduction reaction. The cell integrates a single-crystal working electrode with a gas diffusion counter electrode, enabling enhanced faradaic efficiencies (FEs) and operando measurements under conditions that closely resemble scalable flow systems. The cell design improves N₂ availability and suppresses undesirable counter electrode reactions through the hydrogen oxidation reaction, achieving FEs of up to 37% for ammonia production. Fabrication by 3D-printing polyether ether ketone allows for complex electrolyte flow geometries while maintaining minimal X-ray background interference, critical for X-ray-based techniques. The combination of single-crystal electrodes and optimized flow conditions offers a promising platform for investigating fundamental electrochemical processes under realistic and scalable conditions.</div></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":"8 ","pages":"Article 100279"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949821X25000420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Electrochemical processes are often accompanied by significant transformations at the electrode-electrolyte interface, such as the formation of a solid electrolyte interphase or surface reconstruction. Studying these dynamic changes requires operando characterization techniques to overcome the limitations of ex-situ methods. Here, we present a novel, versatile electrochemical cell optimized for operando synchrotron X-ray studies of the lithium-mediated nitrogen reduction reaction. The cell integrates a single-crystal working electrode with a gas diffusion counter electrode, enabling enhanced faradaic efficiencies (FEs) and operando measurements under conditions that closely resemble scalable flow systems. The cell design improves N₂ availability and suppresses undesirable counter electrode reactions through the hydrogen oxidation reaction, achieving FEs of up to 37% for ammonia production. Fabrication by 3D-printing polyether ether ketone allows for complex electrolyte flow geometries while maintaining minimal X-ray background interference, critical for X-ray-based techniques. The combination of single-crystal electrodes and optimized flow conditions offers a promising platform for investigating fundamental electrochemical processes under realistic and scalable conditions.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信