Enhanced photoelectrochemical properties of TiO2 nanorods decorated with Ag–Zn bimetallic nanoparticles

IF 3.2 4区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Oluwaseun Adedokun , Abeeb O. Muraina , Olayinka J. Oyewole , Shweta Vyas , Mohamed M. Ibrahim , Gaber A.M. Mersal , Gbemiga M. Lana , Oluwatosin S. Obaseki , Fong K. Yam
{"title":"Enhanced photoelectrochemical properties of TiO2 nanorods decorated with Ag–Zn bimetallic nanoparticles","authors":"Oluwaseun Adedokun ,&nbsp;Abeeb O. Muraina ,&nbsp;Olayinka J. Oyewole ,&nbsp;Shweta Vyas ,&nbsp;Mohamed M. Ibrahim ,&nbsp;Gaber A.M. Mersal ,&nbsp;Gbemiga M. Lana ,&nbsp;Oluwatosin S. Obaseki ,&nbsp;Fong K. Yam","doi":"10.1016/j.jics.2025.101708","DOIUrl":null,"url":null,"abstract":"<div><div>TiO<sub>2</sub> nanorods, a promising photocatalyst, suffer from insufficient visible light absorption and rapid charge recombination. This study addresses these limitations by decorating TiO<sub>2</sub> nanorods with Ag–Zn bimetallic nanoparticles. Characterization techniques, including FE-SEM, AFM, XRD, EDX, and UV–vis spectroscopy, established the effective synthesis of the nanostructures and the incorporation of the bimetallic nanoparticles. The introduction of Ag–Zn nanoparticles significantly enhanced absorption of light in visible spectrum, leading to a lessened bandgap from 3.04 eV to 2.72 eV. Photoelectrochemical measurements demonstrated a substantial improvement in photocurrent density, reaching a maximum of 0.385 mA/cm<sup>2</sup> at 1.2 V vs Ag/AgCl for Zn@TiO<sub>2</sub>, compared to 0.033 mA/cm<sup>2</sup> for undecorated TiO<sub>2</sub>. These findings highlight how well the suggested strategy in improving the photoelectrochemical performance of TiO<sub>2</sub> nanorods, paving the way for advanced solar energy conversion applications.</div></div>","PeriodicalId":17276,"journal":{"name":"Journal of the Indian Chemical Society","volume":"102 6","pages":"Article 101708"},"PeriodicalIF":3.2000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Indian Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019452225001438","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

TiO2 nanorods, a promising photocatalyst, suffer from insufficient visible light absorption and rapid charge recombination. This study addresses these limitations by decorating TiO2 nanorods with Ag–Zn bimetallic nanoparticles. Characterization techniques, including FE-SEM, AFM, XRD, EDX, and UV–vis spectroscopy, established the effective synthesis of the nanostructures and the incorporation of the bimetallic nanoparticles. The introduction of Ag–Zn nanoparticles significantly enhanced absorption of light in visible spectrum, leading to a lessened bandgap from 3.04 eV to 2.72 eV. Photoelectrochemical measurements demonstrated a substantial improvement in photocurrent density, reaching a maximum of 0.385 mA/cm2 at 1.2 V vs Ag/AgCl for Zn@TiO2, compared to 0.033 mA/cm2 for undecorated TiO2. These findings highlight how well the suggested strategy in improving the photoelectrochemical performance of TiO2 nanorods, paving the way for advanced solar energy conversion applications.
二氧化钛纳米棒是一种前景广阔的光催化剂,但却存在可见光吸收不足和电荷快速重组的问题。本研究通过用 Ag-Zn 双金属纳米粒子装饰 TiO2 纳米棒,解决了这些局限性。包括 FE-SEM、AFM、XRD、EDX 和 UV-vis 光谱在内的表征技术证实了纳米结构的有效合成和双金属纳米粒子的加入。Ag-Zn 纳米粒子的引入大大增强了对可见光谱光的吸收,使带隙从 3.04 eV 减小到 2.72 eV。光电化学测量结果表明,Zn@TiO2 的光电流密度有了大幅提高,在 1.2 V 对 Ag/AgCl 电压下,Zn@TiO2 的光电流密度最大可达 0.385 mA/cm2,而未装饰的 TiO2 的光电流密度仅为 0.033 mA/cm2。这些发现凸显了所建议的策略在改善 TiO2 纳米棒的光电化学性能方面的效果,为先进的太阳能转换应用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.50
自引率
7.70%
发文量
492
审稿时长
3-8 weeks
期刊介绍: The Journal of the Indian Chemical Society publishes original, fundamental, theorical, experimental research work of highest quality in all areas of chemistry, biochemistry, medicinal chemistry, electrochemistry, agrochemistry, chemical engineering and technology, food chemistry, environmental chemistry, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信