Andrzej Balis , Georgi Gochev , Domenico Truzzolillo , Dawid Lupa , Liliana Szyk-Warszynska , Jan Zawala
{"title":"Water-in-water PEG/DEX/protein microgel emulsions: Effect of microgel particle size on the rate of emulsion phase separation","authors":"Andrzej Balis , Georgi Gochev , Domenico Truzzolillo , Dawid Lupa , Liliana Szyk-Warszynska , Jan Zawala","doi":"10.1016/j.foodhyd.2025.111425","DOIUrl":null,"url":null,"abstract":"<div><div>Protein nanoparticles have been proven to be highly effective stabilizers of water-in-water emulsions obtained from a number of different types of aqueous two-phase systems (ATPS). The emulsion stabilizing efficiency of such particles is attributed to their affinity to the water/water interface of relevant ATPS, and emulsion formulations with long-term stability were reported in the recent years. In this study we investigated the macroscopic dynamics of the early-stage time evolution of dextran-in-polyethylene glycol emulsions obtained from a single ATPS and containing β-lactoglobulin microgel particles of various diameters (<em>ca</em>. 40–190 nm). The results revealed the existence of a threshold in microgel size above which the water-in-water emulsion is stabilized, and that the process of segregative phase separation is determined by the interplay of droplets coalescence and sedimentation. Efficient droplet coalescence inhibition was found for microgel particles larger than 60 nm. Based on previous literature results, we discuss our coalescence-driven phase separation data in the context of the formation of durable particle layers on the emulsion droplets and the resulting droplet-droplet interactions.</div></div>","PeriodicalId":320,"journal":{"name":"Food Hydrocolloids","volume":"167 ","pages":"Article 111425"},"PeriodicalIF":11.0000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Hydrocolloids","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0268005X25003856","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Protein nanoparticles have been proven to be highly effective stabilizers of water-in-water emulsions obtained from a number of different types of aqueous two-phase systems (ATPS). The emulsion stabilizing efficiency of such particles is attributed to their affinity to the water/water interface of relevant ATPS, and emulsion formulations with long-term stability were reported in the recent years. In this study we investigated the macroscopic dynamics of the early-stage time evolution of dextran-in-polyethylene glycol emulsions obtained from a single ATPS and containing β-lactoglobulin microgel particles of various diameters (ca. 40–190 nm). The results revealed the existence of a threshold in microgel size above which the water-in-water emulsion is stabilized, and that the process of segregative phase separation is determined by the interplay of droplets coalescence and sedimentation. Efficient droplet coalescence inhibition was found for microgel particles larger than 60 nm. Based on previous literature results, we discuss our coalescence-driven phase separation data in the context of the formation of durable particle layers on the emulsion droplets and the resulting droplet-droplet interactions.
期刊介绍:
Food Hydrocolloids publishes original and innovative research focused on the characterization, functional properties, and applications of hydrocolloid materials used in food products. These hydrocolloids, defined as polysaccharides and proteins of commercial importance, are added to control aspects such as texture, stability, rheology, and sensory properties. The research's primary emphasis should be on the hydrocolloids themselves, with thorough descriptions of their source, nature, and physicochemical characteristics. Manuscripts are expected to clearly outline specific aims and objectives, include a fundamental discussion of research findings at the molecular level, and address the significance of the results. Studies on hydrocolloids in complex formulations should concentrate on their overall properties and mechanisms of action, while simple formulation development studies may not be considered for publication.
The main areas of interest are:
-Chemical and physicochemical characterisation
Thermal properties including glass transitions and conformational changes-
Rheological properties including viscosity, viscoelastic properties and gelation behaviour-
The influence on organoleptic properties-
Interfacial properties including stabilisation of dispersions, emulsions and foams-
Film forming properties with application to edible films and active packaging-
Encapsulation and controlled release of active compounds-
The influence on health including their role as dietary fibre-
Manipulation of hydrocolloid structure and functionality through chemical, biochemical and physical processes-
New hydrocolloids and hydrocolloid sources of commercial potential.
The Journal also publishes Review articles that provide an overview of the latest developments in topics of specific interest to researchers in this field of activity.