{"title":"ECM, integrins, and DDRs: A nexus of cancer progression, therapy, and future directions","authors":"Md Al Azim, Julie S Di Martino","doi":"10.1016/j.matbio.2025.04.002","DOIUrl":null,"url":null,"abstract":"<div><div>Collagen is the most abundant protein in mammals, significantly contributing to cancer progression. Cells express two primary well-conserved collagen receptors, integrins and discoidin domain receptors (DDRs), which bind collagen on distinct sites, suggesting that cancer cells must integrate both signals to decide their fate. The crosstalk between integrins and DDRs mediated by collagen binding produces dynamic, integrated signals that control tumor progression, therapeutic resistance, and cancer cell heterogeneity. This review will discuss the dynamic interplay among collagen, integrins, and DDRs in ECM remodeling during cancer progression and these receptors' crosstalk. In addition, we explored current and future directions for ECM receptor-targeted therapies, including nanotechnologies and precision medicine, to improve therapeutic outcomes by establishing a proper balance between integrins and DDRs in cancer.</div></div>","PeriodicalId":49851,"journal":{"name":"Matrix Biology","volume":"138 ","pages":"Pages 27-43"},"PeriodicalIF":4.5000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matrix Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0945053X25000356","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Collagen is the most abundant protein in mammals, significantly contributing to cancer progression. Cells express two primary well-conserved collagen receptors, integrins and discoidin domain receptors (DDRs), which bind collagen on distinct sites, suggesting that cancer cells must integrate both signals to decide their fate. The crosstalk between integrins and DDRs mediated by collagen binding produces dynamic, integrated signals that control tumor progression, therapeutic resistance, and cancer cell heterogeneity. This review will discuss the dynamic interplay among collagen, integrins, and DDRs in ECM remodeling during cancer progression and these receptors' crosstalk. In addition, we explored current and future directions for ECM receptor-targeted therapies, including nanotechnologies and precision medicine, to improve therapeutic outcomes by establishing a proper balance between integrins and DDRs in cancer.
期刊介绍:
Matrix Biology (established in 1980 as Collagen and Related Research) is a cutting-edge journal that is devoted to publishing the latest results in matrix biology research. We welcome articles that reside at the nexus of understanding the cellular and molecular pathophysiology of the extracellular matrix. Matrix Biology focusses on solving elusive questions, opening new avenues of thought and discovery, and challenging longstanding biological paradigms.