Three results towards approximation of special maximum matchings in graphs

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Vahan Mkrtchyan
{"title":"Three results towards approximation of special maximum matchings in graphs","authors":"Vahan Mkrtchyan","doi":"10.1016/j.dam.2025.04.005","DOIUrl":null,"url":null,"abstract":"<div><div>For a graph <span><math><mi>G</mi></math></span> define the parameters <span><math><mrow><mi>ℓ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>L</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> as the minimum and maximum value of <span><math><mrow><mi>ν</mi><mrow><mo>(</mo><mi>G</mi><mo>∖</mo><mi>F</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mi>F</mi></math></span> is a maximum matching of <span><math><mi>G</mi></math></span> and <span><math><mrow><mi>ν</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is the matching number of <span><math><mi>G</mi></math></span>. In this paper, we show that there is a small constant <span><math><mrow><mi>c</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>, such that the following decision problem is NP-complete: given a graph <span><math><mi>G</mi></math></span> and <span><math><mrow><mi>k</mi><mo>≤</mo><mfrac><mrow><mrow><mo>|</mo><mi>V</mi><mo>|</mo></mrow></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></math></span>, check whether there is a maximum matching <span><math><mi>F</mi></math></span> in <span><math><mi>G</mi></math></span>, such that <span><math><mrow><mrow><mo>|</mo><mi>ν</mi><mrow><mo>(</mo><mi>G</mi><mo>∖</mo><mi>F</mi><mo>)</mo></mrow><mo>−</mo><mi>k</mi><mo>|</mo></mrow><mo>≤</mo><mi>c</mi><mi>⋅</mi><mrow><mo>|</mo><mi>V</mi><mo>|</mo></mrow></mrow></math></span>. Note that when <span><math><mrow><mi>c</mi><mo>=</mo><mn>1</mn></mrow></math></span>, this problem is polynomial time solvable as we observe in the paper. Since in any graph <span><math><mi>G</mi></math></span>, we have <span><math><mrow><mi>L</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mn>2</mn><mi>ℓ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, any polynomial time algorithm constructing a maximum matching of a graph is a 2-approximation algorithm for <span><math><mrow><mi>ℓ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>-approximation algorithm for <span><math><mrow><mi>L</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. We complement these observations by presenting two inapproximability results for <span><math><mrow><mi>ℓ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>L</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"371 ","pages":"Pages 127-136"},"PeriodicalIF":1.0000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25001751","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

For a graph G define the parameters (G) and L(G) as the minimum and maximum value of ν(GF), where F is a maximum matching of G and ν(G) is the matching number of G. In this paper, we show that there is a small constant c>0, such that the following decision problem is NP-complete: given a graph G and k|V|2, check whether there is a maximum matching F in G, such that |ν(GF)k|c|V|. Note that when c=1, this problem is polynomial time solvable as we observe in the paper. Since in any graph G, we have L(G)2(G), any polynomial time algorithm constructing a maximum matching of a graph is a 2-approximation algorithm for (G) and 12-approximation algorithm for L(G). We complement these observations by presenting two inapproximability results for (G) and L(G).
图中特殊最大匹配的三个近似结果
对于图 G,将参数 ℓ(G) 和 L(G) 定义为 ν(G∖F) 的最小值和最大值,其中 F 是图 G 的最大匹配,ν(G) 是图 G 的匹配数。在本文中,我们证明了存在一个小常数 c>0,使得下面的决策问题是 NP-完全的:给定一个图 G 和 k≤|V|2,检查 G 中是否存在最大匹配度 F,使得|ν(G∖F)-k|≤c⋅|V|。请注意,当 c=1 时,正如我们在论文中所观察到的,这个问题是多项式时间可解的。由于在任何图 G 中,我们都有 L(G)≤2ℓ(G),因此任何构造图最大匹配的多项式时间算法都是ℓ(G) 的 2 近似算法和 L(G) 的 12 近似算法。我们提出了 ℓ(G) 和 L(G) 的两个不可逼近性结果,以补充这些观察结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信