Nellie Krougly , Konstantinos Tsikrikis , Fraser MacRae , Dimitra V. Pouliopoulou , Sue Peters
{"title":"Linking brain activation to standing balance performance: A systematic review and meta analysis of functional near-infrared spectroscopy literature","authors":"Nellie Krougly , Konstantinos Tsikrikis , Fraser MacRae , Dimitra V. Pouliopoulou , Sue Peters","doi":"10.1016/j.gaitpost.2025.04.009","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Functional Near-Infrared Spectroscopy (fNIRS) holds promise for clinical applications in the field of balance impairment amelioration; however, the relationship between fNIRS metrics and balance performance remains uncertain. We aimed to quantify the correlations between fNIRS-derived brain activation and standing balance performance, and determine variables that influence these associations.</div></div><div><h3>Methods</h3><div>We systematically reviewed English-language studies, published across PuBMed, PsycINFO, Embase, CINAHL, Ovid Medline, and Web of Science from inception up until July 1, 2024, that assessed standing balance tasks in adults > 18 years old with or without medical diagnosis measured with fNIRS. Pooled correlation coefficients were synthesized using a random effects restricted maximum likelihood model.</div></div><div><h3>Results</h3><div>Overall, 17 studies were included with 420 participants. Key factors influencing the identified relationships were brain region and participant diagnosis. We identified moderate correlations between balance performance and cortical activation recorded by fNIRS in the supplementary motor area (SMA) (r = 0.52, 95 % CI = 0.39 0.64), and the prefrontal cortex (PFC) (r = 0.47, 95 % CI=0.32 – 0.60). In the PFC, increased oxygenated haemoglobin (HbO) was negatively associated with balance measures. The reverse relationship was reported in the PFC for individuals with physical and cognitive impairment. In the SMA, HbO was positively associated with balance. Few studies found associations between deoxygenated haemoglobin (HbR) and total hemoglobin (HbT) with balance performance.</div></div><div><h3>Significance</h3><div>Current evidence supports a relationship between fNIRS measures, specifically HbO, with standing balance performance. This relationship depends on the brain region measured, age, and the diagnosis of the participants. To better understand this relationship, there is a need to report standardized balance performance metrics alongside other metrics of interest to better synthesize data across publications. Improved understanding the neural basis of standing balance with fNIRS will lead to more informed interventions for balance rehabilitation.</div></div>","PeriodicalId":12496,"journal":{"name":"Gait & posture","volume":"120 ","pages":"Pages 124-135"},"PeriodicalIF":2.2000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gait & posture","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0966636225001742","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Functional Near-Infrared Spectroscopy (fNIRS) holds promise for clinical applications in the field of balance impairment amelioration; however, the relationship between fNIRS metrics and balance performance remains uncertain. We aimed to quantify the correlations between fNIRS-derived brain activation and standing balance performance, and determine variables that influence these associations.
Methods
We systematically reviewed English-language studies, published across PuBMed, PsycINFO, Embase, CINAHL, Ovid Medline, and Web of Science from inception up until July 1, 2024, that assessed standing balance tasks in adults > 18 years old with or without medical diagnosis measured with fNIRS. Pooled correlation coefficients were synthesized using a random effects restricted maximum likelihood model.
Results
Overall, 17 studies were included with 420 participants. Key factors influencing the identified relationships were brain region and participant diagnosis. We identified moderate correlations between balance performance and cortical activation recorded by fNIRS in the supplementary motor area (SMA) (r = 0.52, 95 % CI = 0.39 0.64), and the prefrontal cortex (PFC) (r = 0.47, 95 % CI=0.32 – 0.60). In the PFC, increased oxygenated haemoglobin (HbO) was negatively associated with balance measures. The reverse relationship was reported in the PFC for individuals with physical and cognitive impairment. In the SMA, HbO was positively associated with balance. Few studies found associations between deoxygenated haemoglobin (HbR) and total hemoglobin (HbT) with balance performance.
Significance
Current evidence supports a relationship between fNIRS measures, specifically HbO, with standing balance performance. This relationship depends on the brain region measured, age, and the diagnosis of the participants. To better understand this relationship, there is a need to report standardized balance performance metrics alongside other metrics of interest to better synthesize data across publications. Improved understanding the neural basis of standing balance with fNIRS will lead to more informed interventions for balance rehabilitation.
期刊介绍:
Gait & Posture is a vehicle for the publication of up-to-date basic and clinical research on all aspects of locomotion and balance.
The topics covered include: Techniques for the measurement of gait and posture, and the standardization of results presentation; Studies of normal and pathological gait; Treatment of gait and postural abnormalities; Biomechanical and theoretical approaches to gait and posture; Mathematical models of joint and muscle mechanics; Neurological and musculoskeletal function in gait and posture; The evolution of upright posture and bipedal locomotion; Adaptations of carrying loads, walking on uneven surfaces, climbing stairs etc; spinal biomechanics only if they are directly related to gait and/or posture and are of general interest to our readers; The effect of aging and development on gait and posture; Psychological and cultural aspects of gait; Patient education.