Convergence during feedback controlled reactive magnetron sputtering: Mechanisms and classification

IF 5.3 2区 材料科学 Q1 MATERIALS SCIENCE, COATINGS & FILMS
J. Van Bever , K. Strijckmans , S. Konstantinidis , D. Depla
{"title":"Convergence during feedback controlled reactive magnetron sputtering: Mechanisms and classification","authors":"J. Van Bever ,&nbsp;K. Strijckmans ,&nbsp;S. Konstantinidis ,&nbsp;D. Depla","doi":"10.1016/j.surfcoat.2025.132095","DOIUrl":null,"url":null,"abstract":"<div><div>During feedback control of reactive magnetron sputtering, process parameters often exhibit a complex time-dependent behavior. This behavior hinders process stabilization and can lead to a modification of the desired film properties. This study investigates the processes behind this behavior by performing time-resolved measurements during reactive sputtering of aluminum in argon/oxygen mixtures. Two distinct groups of physical processes were identified. The first group exhibits a relatively fast time-dependent behavior, leading to process stabilization within 5 to 8 min. This group includes processes related to reactive gas introduction, its interaction with deposited material, and the feedback loop characteristics. The second group causes a continuous drift of the process for more than 45 min, primarily due to oxide deposition on the chamber walls and target erosion. These two groups have a different impact on the process curves known as hysteresis curves. For the first group, the impact is minimal while for the second group the hysteresis curve becomes distorted, potentially leading to misinterpretation or incorrect selection of deposition conditions. The utilization of the difference between the discharge voltage and floating potential as the feedback input signal eliminates the impact of oxide deposition and mitigates this problem.</div></div>","PeriodicalId":22009,"journal":{"name":"Surface & Coatings Technology","volume":"507 ","pages":"Article 132095"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface & Coatings Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S025789722500369X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0

Abstract

During feedback control of reactive magnetron sputtering, process parameters often exhibit a complex time-dependent behavior. This behavior hinders process stabilization and can lead to a modification of the desired film properties. This study investigates the processes behind this behavior by performing time-resolved measurements during reactive sputtering of aluminum in argon/oxygen mixtures. Two distinct groups of physical processes were identified. The first group exhibits a relatively fast time-dependent behavior, leading to process stabilization within 5 to 8 min. This group includes processes related to reactive gas introduction, its interaction with deposited material, and the feedback loop characteristics. The second group causes a continuous drift of the process for more than 45 min, primarily due to oxide deposition on the chamber walls and target erosion. These two groups have a different impact on the process curves known as hysteresis curves. For the first group, the impact is minimal while for the second group the hysteresis curve becomes distorted, potentially leading to misinterpretation or incorrect selection of deposition conditions. The utilization of the difference between the discharge voltage and floating potential as the feedback input signal eliminates the impact of oxide deposition and mitigates this problem.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Surface & Coatings Technology
Surface & Coatings Technology 工程技术-材料科学:膜
CiteScore
10.00
自引率
11.10%
发文量
921
审稿时长
19 days
期刊介绍: Surface and Coatings Technology is an international archival journal publishing scientific papers on significant developments in surface and interface engineering to modify and improve the surface properties of materials for protection in demanding contact conditions or aggressive environments, or for enhanced functional performance. Contributions range from original scientific articles concerned with fundamental and applied aspects of research or direct applications of metallic, inorganic, organic and composite coatings, to invited reviews of current technology in specific areas. Papers submitted to this journal are expected to be in line with the following aspects in processes, and properties/performance: A. Processes: Physical and chemical vapour deposition techniques, thermal and plasma spraying, surface modification by directed energy techniques such as ion, electron and laser beams, thermo-chemical treatment, wet chemical and electrochemical processes such as plating, sol-gel coating, anodization, plasma electrolytic oxidation, etc., but excluding painting. B. Properties/performance: friction performance, wear resistance (e.g., abrasion, erosion, fretting, etc), corrosion and oxidation resistance, thermal protection, diffusion resistance, hydrophilicity/hydrophobicity, and properties relevant to smart materials behaviour and enhanced multifunctional performance for environmental, energy and medical applications, but excluding device aspects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信