Sofiya Bobrovska , Erin Newcomer , Michael Gottlieb , V. Eloesa McSorley , Alyse Kittner , Mary K. Hayden , Stefan Green , Hannah J. Barbian
{"title":"Hospital air sampling enables surveillance of respiratory virus infections and genomes","authors":"Sofiya Bobrovska , Erin Newcomer , Michael Gottlieb , V. Eloesa McSorley , Alyse Kittner , Mary K. Hayden , Stefan Green , Hannah J. Barbian","doi":"10.1016/j.scitotenv.2025.179346","DOIUrl":null,"url":null,"abstract":"<div><div>There is an urgent need for early detection and comprehensive surveillance of respiratory pathogens. Environmental surveillance may be key to timely responses for newly emerging pathogens and infections that are unreported or underreported. Here, we employed air sampling in a large urban hospital. Air samples (<em>n</em> = 358) were collected weekly at five locations, including two in the emergency department, two in hospital common areas and one in a storage room, for two respiratory virus seasons (November 2022 to June 2024). Air samples were tested for eight respiratory pathogens by qPCR, including RNA and DNA viruses and a bacterium. Air samples had an average of four detected pathogens per sample and 97 % samples contained SARS-CoV-2. Air sample pathogen positivity and quantity were strongly correlated with clinical surveillance for four seasonal respiratory pathogens: influenza A and B, respiratory syncytial virus, and human metapneumovirus. Targeted amplicon sequencing of SARS-CoV-2 showed that lineages detected in air samples reflected those in contemporaneous regional clinical specimens. Metagenomic sequencing with viral capture enrichment detected myriad human pathogens, including respiratory-associated viruses with recovery of full viral genomes. Detection of viral pathogens correlated well between virus capture sequencing and qPCR. Overall, this suggests air sampling can be an agile and effective tool for pathogen early warning, surveillance and genome characterization.</div></div>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":"977 ","pages":"Article 179346"},"PeriodicalIF":8.2000,"publicationDate":"2025-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0048969725009829","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
There is an urgent need for early detection and comprehensive surveillance of respiratory pathogens. Environmental surveillance may be key to timely responses for newly emerging pathogens and infections that are unreported or underreported. Here, we employed air sampling in a large urban hospital. Air samples (n = 358) were collected weekly at five locations, including two in the emergency department, two in hospital common areas and one in a storage room, for two respiratory virus seasons (November 2022 to June 2024). Air samples were tested for eight respiratory pathogens by qPCR, including RNA and DNA viruses and a bacterium. Air samples had an average of four detected pathogens per sample and 97 % samples contained SARS-CoV-2. Air sample pathogen positivity and quantity were strongly correlated with clinical surveillance for four seasonal respiratory pathogens: influenza A and B, respiratory syncytial virus, and human metapneumovirus. Targeted amplicon sequencing of SARS-CoV-2 showed that lineages detected in air samples reflected those in contemporaneous regional clinical specimens. Metagenomic sequencing with viral capture enrichment detected myriad human pathogens, including respiratory-associated viruses with recovery of full viral genomes. Detection of viral pathogens correlated well between virus capture sequencing and qPCR. Overall, this suggests air sampling can be an agile and effective tool for pathogen early warning, surveillance and genome characterization.
期刊介绍:
The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere.
The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.