The impact of polyvinyl chloride microplastics on carbon and nitrogen cycling in peat-forming environments: relevance of the filler additive calcium carbonate (CaCO3)

IF 8.2 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Juanita Mora-Gomez , Adrien Jacotot , Nicolas Freslon , Hela Ben Zeineb , Michael Charron , Catherine Joulian , Claude Le Milbeau
{"title":"The impact of polyvinyl chloride microplastics on carbon and nitrogen cycling in peat-forming environments: relevance of the filler additive calcium carbonate (CaCO3)","authors":"Juanita Mora-Gomez ,&nbsp;Adrien Jacotot ,&nbsp;Nicolas Freslon ,&nbsp;Hela Ben Zeineb ,&nbsp;Michael Charron ,&nbsp;Catherine Joulian ,&nbsp;Claude Le Milbeau","doi":"10.1016/j.scitotenv.2025.179341","DOIUrl":null,"url":null,"abstract":"<div><div>Peat-forming wetlands (PFW) are crucial in the global C-cycle, yet they are increasingly threatened by various anthropogenic pressures, including microplastic (MP) pollution. We investigate the impacts of polyvinyl chloride (PVC) and its additive, calcium carbonate (CaCO<sub>3</sub>) on organic matter (OM) degradation in PFW. We conducted two experiments: first, by mixing peat soil with increasing concentrations of crushed sanitary PVC-MP (0.3 %, 3 %, and 30 %) and second, by assessing the role of CaCO₃ in modulating these impacts. Our findings revealed significant alterations in peat chemical properties largely mediated by CaCO<sub>3</sub> (i.e. increased pH, and Ca<sup>2+</sup>, Mg<sup>2+</sup>, K<sup>+</sup> concentrations). PVC-MP increased carbon dioxide (CO<sub>2</sub>) and methane (CH<sub>4</sub>) production, as well as dissolved organic carbon release. CaCO<sub>3</sub> may have enhanced CO<sub>2</sub> release through its dissolution and contributed to CH<sub>4</sub> production as a C source for a more diverse and active methanogenic community (higher <em>mcrA</em> gene abundance). Shifts in microbial community composition (e.g. reduction of <em>Acidobacteriae</em> and increase in active fermenters, such as <em>Clostridia</em>) and metabolism (higher lignin-like compounds degradation and P-uptake activity but lower activity of labile-C degrading enzymes) also contributed in the C-cycle alterations. PVC-MP enhanced denitrification (<em>narG</em> gene abundance) but reduced relative proportion of the ammonia-oxidizing archaea <em>Nitrososphaeria</em>, leading to inhibition of nitrification. The effects of PVC-MP were concentration-dependent, with CaCO₃ strongly influencing on the C cycle, while its impact on the N cycle was only partial, suggesting potential effect of other additives, such as plasticisers. Overall, our results highlight a significant disruption of microbial processes due to MP pollution, leading to increased greenhouse gas emissions and significant implications on the role of PFW as global C-sinks.</div></div>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":"977 ","pages":"Article 179341"},"PeriodicalIF":8.2000,"publicationDate":"2025-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0048969725009775","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Peat-forming wetlands (PFW) are crucial in the global C-cycle, yet they are increasingly threatened by various anthropogenic pressures, including microplastic (MP) pollution. We investigate the impacts of polyvinyl chloride (PVC) and its additive, calcium carbonate (CaCO3) on organic matter (OM) degradation in PFW. We conducted two experiments: first, by mixing peat soil with increasing concentrations of crushed sanitary PVC-MP (0.3 %, 3 %, and 30 %) and second, by assessing the role of CaCO₃ in modulating these impacts. Our findings revealed significant alterations in peat chemical properties largely mediated by CaCO3 (i.e. increased pH, and Ca2+, Mg2+, K+ concentrations). PVC-MP increased carbon dioxide (CO2) and methane (CH4) production, as well as dissolved organic carbon release. CaCO3 may have enhanced CO2 release through its dissolution and contributed to CH4 production as a C source for a more diverse and active methanogenic community (higher mcrA gene abundance). Shifts in microbial community composition (e.g. reduction of Acidobacteriae and increase in active fermenters, such as Clostridia) and metabolism (higher lignin-like compounds degradation and P-uptake activity but lower activity of labile-C degrading enzymes) also contributed in the C-cycle alterations. PVC-MP enhanced denitrification (narG gene abundance) but reduced relative proportion of the ammonia-oxidizing archaea Nitrososphaeria, leading to inhibition of nitrification. The effects of PVC-MP were concentration-dependent, with CaCO₃ strongly influencing on the C cycle, while its impact on the N cycle was only partial, suggesting potential effect of other additives, such as plasticisers. Overall, our results highlight a significant disruption of microbial processes due to MP pollution, leading to increased greenhouse gas emissions and significant implications on the role of PFW as global C-sinks.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Science of the Total Environment
Science of the Total Environment 环境科学-环境科学
CiteScore
17.60
自引率
10.20%
发文量
8726
审稿时长
2.4 months
期刊介绍: The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere. The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信