Deep learning-based single-shot lateral shearing interferometry

IF 3.5 2区 工程技术 Q2 OPTICS
Manh The Nguyen , Hyo-Mi Park , Ki-Nam Joo , Young-Sik Ghim
{"title":"Deep learning-based single-shot lateral shearing interferometry","authors":"Manh The Nguyen ,&nbsp;Hyo-Mi Park ,&nbsp;Ki-Nam Joo ,&nbsp;Young-Sik Ghim","doi":"10.1016/j.optlaseng.2025.109010","DOIUrl":null,"url":null,"abstract":"<div><div>Lateral shearing interferometry (LSI) is a powerful measurement method for wavefront sensing and optical testing. However, traditional LSI methods often face challenges in terms of complicated system configurations and vibration sensitivity. In this paper, we propose a novel approach that leverages deep learning to enable single-shot LSI for surface measurement. In our LSI system, the <em>x</em>- and <em>y</em>-directional shearing modules are attached together and a polarization grating and a polarization camera are utilized to obtain a single composite interferogram, which is the summation of the <em>x</em>- and <em>y</em>-directional shearing interferograms. Deep learning is then employed to accurately obtain the <em>x</em>- and <em>y</em>-phases (which are directly related to the surface slope) from the single composite interferogram, significantly reducing the effect of vibration and improving the robustness of the measurements. We trained a deep learning network using training data obtained from a deformable mirror so that the trained network knows how to retrieve the <em>x</em>- and <em>y</em>-phases from a single composite interferogram. We demonstrate the effectiveness of our approach through experimental measurement of different surfaces ranging from simple concave to complex random surfaces, and show that our deep learning-based LSI enables single-shot and even dynamic surface measurement. This work opens new avenues for the application of artificial intelligence in LSI to enable high-speed and dynamic measurement of specular surfaces.</div></div>","PeriodicalId":49719,"journal":{"name":"Optics and Lasers in Engineering","volume":"191 ","pages":"Article 109010"},"PeriodicalIF":3.5000,"publicationDate":"2025-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Lasers in Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143816625001976","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Lateral shearing interferometry (LSI) is a powerful measurement method for wavefront sensing and optical testing. However, traditional LSI methods often face challenges in terms of complicated system configurations and vibration sensitivity. In this paper, we propose a novel approach that leverages deep learning to enable single-shot LSI for surface measurement. In our LSI system, the x- and y-directional shearing modules are attached together and a polarization grating and a polarization camera are utilized to obtain a single composite interferogram, which is the summation of the x- and y-directional shearing interferograms. Deep learning is then employed to accurately obtain the x- and y-phases (which are directly related to the surface slope) from the single composite interferogram, significantly reducing the effect of vibration and improving the robustness of the measurements. We trained a deep learning network using training data obtained from a deformable mirror so that the trained network knows how to retrieve the x- and y-phases from a single composite interferogram. We demonstrate the effectiveness of our approach through experimental measurement of different surfaces ranging from simple concave to complex random surfaces, and show that our deep learning-based LSI enables single-shot and even dynamic surface measurement. This work opens new avenues for the application of artificial intelligence in LSI to enable high-speed and dynamic measurement of specular surfaces.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Optics and Lasers in Engineering
Optics and Lasers in Engineering 工程技术-光学
CiteScore
8.90
自引率
8.70%
发文量
384
审稿时长
42 days
期刊介绍: Optics and Lasers in Engineering aims at providing an international forum for the interchange of information on the development of optical techniques and laser technology in engineering. Emphasis is placed on contributions targeted at the practical use of methods and devices, the development and enhancement of solutions and new theoretical concepts for experimental methods. Optics and Lasers in Engineering reflects the main areas in which optical methods are being used and developed for an engineering environment. Manuscripts should offer clear evidence of novelty and significance. Papers focusing on parameter optimization or computational issues are not suitable. Similarly, papers focussed on an application rather than the optical method fall outside the journal''s scope. The scope of the journal is defined to include the following: -Optical Metrology- Optical Methods for 3D visualization and virtual engineering- Optical Techniques for Microsystems- Imaging, Microscopy and Adaptive Optics- Computational Imaging- Laser methods in manufacturing- Integrated optical and photonic sensors- Optics and Photonics in Life Science- Hyperspectral and spectroscopic methods- Infrared and Terahertz techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信