Methylation of immature small ribosomal subunits by methyltransferases conferring aminoglycoside resistance

IF 3.8 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Marko Močibob , Sonja Obranić , Domagoj Kifer , Jasmina Rokov-Plavec , Gordana Maravić-Vlahoviček
{"title":"Methylation of immature small ribosomal subunits by methyltransferases conferring aminoglycoside resistance","authors":"Marko Močibob ,&nbsp;Sonja Obranić ,&nbsp;Domagoj Kifer ,&nbsp;Jasmina Rokov-Plavec ,&nbsp;Gordana Maravić-Vlahoviček","doi":"10.1016/j.abb.2025.110422","DOIUrl":null,"url":null,"abstract":"<div><div>Aminoglycosides are broad-spectrum antibiotics critical to clinical treatment, but the emergence of bacterial resistance, particularly through 16S rRNA methyltransferases, has compromised their efficacy. These enzymes, originally discovered in natural aminoglycoside producers, confer resistance by methylating nucleotides G1405 and A1408 in 16S rRNA, blocking antibiotic binding to the ribosome. This study investigated the binding affinities and methylation activities of 16S rRNA methyltransferases KamB, NpmA, RmtA, RmtC, and Sgm with immature 30S ribosomal subunits from <em>E. coli</em> strains lacking RimM and YjeQ ribosomal assembly factors. Binding affinities to mature 30S ribosomal subunits and immature 30S assembly forms isolated from Δ<em>yjeQ</em> and Δ<em>rimM</em> strains were determined by microscale thermophoresis and interactions were further validated with <em>in vitro</em> pull-down assays. Methylation of immature 30S subunits was examined with primer extension on 16S rRNA extracted from methylation assays <em>in vitro</em> and from cells with immature 30S subunits expressing 16S rRNA methyltransferases <em>in vivo</em>, showing successful methylation of target nucleotides in both experimental systems. The results reveal that aminoglycoside resistance methyltransferases are capable to bind and modify late-stage immature 30S ribosomal subunits pointing to possibility that the resistance to aminoglycoside antibiotics is installed and established before the full maturation of ribosomal 30S subunit.</div></div>","PeriodicalId":8174,"journal":{"name":"Archives of biochemistry and biophysics","volume":"769 ","pages":"Article 110422"},"PeriodicalIF":3.8000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of biochemistry and biophysics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003986125001353","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Aminoglycosides are broad-spectrum antibiotics critical to clinical treatment, but the emergence of bacterial resistance, particularly through 16S rRNA methyltransferases, has compromised their efficacy. These enzymes, originally discovered in natural aminoglycoside producers, confer resistance by methylating nucleotides G1405 and A1408 in 16S rRNA, blocking antibiotic binding to the ribosome. This study investigated the binding affinities and methylation activities of 16S rRNA methyltransferases KamB, NpmA, RmtA, RmtC, and Sgm with immature 30S ribosomal subunits from E. coli strains lacking RimM and YjeQ ribosomal assembly factors. Binding affinities to mature 30S ribosomal subunits and immature 30S assembly forms isolated from ΔyjeQ and ΔrimM strains were determined by microscale thermophoresis and interactions were further validated with in vitro pull-down assays. Methylation of immature 30S subunits was examined with primer extension on 16S rRNA extracted from methylation assays in vitro and from cells with immature 30S subunits expressing 16S rRNA methyltransferases in vivo, showing successful methylation of target nucleotides in both experimental systems. The results reveal that aminoglycoside resistance methyltransferases are capable to bind and modify late-stage immature 30S ribosomal subunits pointing to possibility that the resistance to aminoglycoside antibiotics is installed and established before the full maturation of ribosomal 30S subunit.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Archives of biochemistry and biophysics
Archives of biochemistry and biophysics 生物-生化与分子生物学
CiteScore
7.40
自引率
0.00%
发文量
245
审稿时长
26 days
期刊介绍: Archives of Biochemistry and Biophysics publishes quality original articles and reviews in the developing areas of biochemistry and biophysics. Research Areas Include: • Enzyme and protein structure, function, regulation. Folding, turnover, and post-translational processing • Biological oxidations, free radical reactions, redox signaling, oxygenases, P450 reactions • Signal transduction, receptors, membrane transport, intracellular signals. Cellular and integrated metabolism.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信