Chlorantraniliprole-induced oxidative stress, DNA damage, and apoptosis in Caenorhabditis elegans: Mechanistic insights and ecological risk implications

IF 6.2 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Fengyuan Hu , Mengzhen Yang , Shaohua Han , Guokun Hu , Xiaoxue Ji , Kang Qiao
{"title":"Chlorantraniliprole-induced oxidative stress, DNA damage, and apoptosis in Caenorhabditis elegans: Mechanistic insights and ecological risk implications","authors":"Fengyuan Hu ,&nbsp;Mengzhen Yang ,&nbsp;Shaohua Han ,&nbsp;Guokun Hu ,&nbsp;Xiaoxue Ji ,&nbsp;Kang Qiao","doi":"10.1016/j.ecoenv.2025.118164","DOIUrl":null,"url":null,"abstract":"<div><div>Chlorantraniliprole (CAP) is one of the most widely used insecticides in the world. CAP is strictly restricted in foodstuff with maximum residual limits (MRLs) from 0.01 to 40 mg/kg set by Chinese national food safety standard. However, a detailed evaluation on its possible acute toxicity and the underlying mechanisms remains inconclusive. In this study, effects of CAP at environmentally relevant concentrations on growth, locomotion, lifespan, reproduction, and antioxidative defense systems were evaluated using the model organism <em>Caenorhabditis elegans</em>. Exposure to CAP notably reduced nematode development, head thrash, and pharyngeal pumping frequency compared with the control. Moreover, CAP at 0.1, 1, and 10 μg/L decreased lifespan of nematodes by 23.73 %, 28.71 %, and 36.23 %, respectively. CAP at 1 and 10 μg/L enhanced the ROS level, reduced the activity of antioxidative enzyme, including CAT and SOD. CAP also regulated mRNA expression levels of <em>daf-16</em>, <em>skn-1</em>, <em>sod-3</em>, <em>gst-4</em>, <em>ced-3</em>, <em>ced-4</em>, <em>ced-9</em>, <em>egl-1</em>, <em>clk-2</em>, and <em>hus-1</em> in the nematodes, while no significant effect in the mutants was observed. Pearson correlation analysis revealed that significant correlation existed between tested parameters, indicating that CAP caused a series of negative effects in the nematodes. Meanwhile, molecular docking results revealed the potential of CAP to bind with oxidative stress, DNA damage and apoptosis proteins, providing molecular mechanisms for the observed detrimental effects. Therefore, our results suggested that acute exposure to CAP at environmental concentrations caused oxidative stress, DNA damage and apoptosis in the nematodes<em>.</em> Our results shed new light on risk assessment and management of CAP.</div></div>","PeriodicalId":303,"journal":{"name":"Ecotoxicology and Environmental Safety","volume":"296 ","pages":"Article 118164"},"PeriodicalIF":6.2000,"publicationDate":"2025-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecotoxicology and Environmental Safety","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0147651325005007","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Chlorantraniliprole (CAP) is one of the most widely used insecticides in the world. CAP is strictly restricted in foodstuff with maximum residual limits (MRLs) from 0.01 to 40 mg/kg set by Chinese national food safety standard. However, a detailed evaluation on its possible acute toxicity and the underlying mechanisms remains inconclusive. In this study, effects of CAP at environmentally relevant concentrations on growth, locomotion, lifespan, reproduction, and antioxidative defense systems were evaluated using the model organism Caenorhabditis elegans. Exposure to CAP notably reduced nematode development, head thrash, and pharyngeal pumping frequency compared with the control. Moreover, CAP at 0.1, 1, and 10 μg/L decreased lifespan of nematodes by 23.73 %, 28.71 %, and 36.23 %, respectively. CAP at 1 and 10 μg/L enhanced the ROS level, reduced the activity of antioxidative enzyme, including CAT and SOD. CAP also regulated mRNA expression levels of daf-16, skn-1, sod-3, gst-4, ced-3, ced-4, ced-9, egl-1, clk-2, and hus-1 in the nematodes, while no significant effect in the mutants was observed. Pearson correlation analysis revealed that significant correlation existed between tested parameters, indicating that CAP caused a series of negative effects in the nematodes. Meanwhile, molecular docking results revealed the potential of CAP to bind with oxidative stress, DNA damage and apoptosis proteins, providing molecular mechanisms for the observed detrimental effects. Therefore, our results suggested that acute exposure to CAP at environmental concentrations caused oxidative stress, DNA damage and apoptosis in the nematodes. Our results shed new light on risk assessment and management of CAP.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.10
自引率
5.90%
发文量
1234
审稿时长
88 days
期刊介绍: Ecotoxicology and Environmental Safety is a multi-disciplinary journal that focuses on understanding the exposure and effects of environmental contamination on organisms including human health. The scope of the journal covers three main themes. The topics within these themes, indicated below, include (but are not limited to) the following: Ecotoxicology、Environmental Chemistry、Environmental Safety etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信