Efficient removal of cadmium (II) and arsenic (III) from water by nano-zero-valent iron modified biochar-zeolite composite

IF 6.2 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Mengyuan Wu , Lijuan Wu , Wen Zhang , Xianbao Zhong , Runfeng Guo , Ziying Cui , Yajun Yang , Jialong Lv
{"title":"Efficient removal of cadmium (II) and arsenic (III) from water by nano-zero-valent iron modified biochar-zeolite composite","authors":"Mengyuan Wu ,&nbsp;Lijuan Wu ,&nbsp;Wen Zhang ,&nbsp;Xianbao Zhong ,&nbsp;Runfeng Guo ,&nbsp;Ziying Cui ,&nbsp;Yajun Yang ,&nbsp;Jialong Lv","doi":"10.1016/j.ecoenv.2025.118178","DOIUrl":null,"url":null,"abstract":"<div><div>For the removal of Cd(II) and As(III) from water, this study synthesized a nano-zero-valent iron-loaded biochar-zeolite composite material (nZVI-BCZo) using a liquid-phase reduction method, with biochar, zeolite, and FeSO₄·7H₂O as precursors. The successful incorporation of nZVI onto the BCZo was verified through Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), and Fourier Transform Infrared Spectroscopy (FTIR) analyses, which revealed significant modifications in the surface oxygen-containing functional groups. Batch adsorption experiments were conducted to evaluate the adsorption characteristics and performance of nZVI-BCZo for Cd(II) and As(III). Under optimal conditions (pH 6.0, temperature of 310 K, and an adsorption time of 360 min), the maximum adsorption capacities for Cd(II) and As(III) were found to be 28.09 mg/g and 186.99 mg/g, respectively. The influence of pH on removal efficiency was more pronounced than that of temperature, with nZVI-BCZo exhibiting a higher affinity for As(III) compared to Cd(II). Kinetic analysis showed that the adsorption process is primarily controlled by chemical adsorption and follows a monolayer adsorption mechanism. Regeneration tests demonstrated that nZVI-BCZo retained good adsorption capacity after three cycles, with adsorption efficiencies of 67.78 % for Cd(II) and 53.04 % for As(III), indicating its potential for repeated use in water treatment applications. The economic evaluation revealed that nZVI-BCZo has a lower processing cost. Therefore, this study established nZVI-BCZo as an efficient, reusable, and cost-effective adsorbent for the treatment of heavy metal-laden water.</div></div>","PeriodicalId":303,"journal":{"name":"Ecotoxicology and Environmental Safety","volume":"296 ","pages":"Article 118178"},"PeriodicalIF":6.2000,"publicationDate":"2025-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecotoxicology and Environmental Safety","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0147651325005147","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

For the removal of Cd(II) and As(III) from water, this study synthesized a nano-zero-valent iron-loaded biochar-zeolite composite material (nZVI-BCZo) using a liquid-phase reduction method, with biochar, zeolite, and FeSO₄·7H₂O as precursors. The successful incorporation of nZVI onto the BCZo was verified through Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), and Fourier Transform Infrared Spectroscopy (FTIR) analyses, which revealed significant modifications in the surface oxygen-containing functional groups. Batch adsorption experiments were conducted to evaluate the adsorption characteristics and performance of nZVI-BCZo for Cd(II) and As(III). Under optimal conditions (pH 6.0, temperature of 310 K, and an adsorption time of 360 min), the maximum adsorption capacities for Cd(II) and As(III) were found to be 28.09 mg/g and 186.99 mg/g, respectively. The influence of pH on removal efficiency was more pronounced than that of temperature, with nZVI-BCZo exhibiting a higher affinity for As(III) compared to Cd(II). Kinetic analysis showed that the adsorption process is primarily controlled by chemical adsorption and follows a monolayer adsorption mechanism. Regeneration tests demonstrated that nZVI-BCZo retained good adsorption capacity after three cycles, with adsorption efficiencies of 67.78 % for Cd(II) and 53.04 % for As(III), indicating its potential for repeated use in water treatment applications. The economic evaluation revealed that nZVI-BCZo has a lower processing cost. Therefore, this study established nZVI-BCZo as an efficient, reusable, and cost-effective adsorbent for the treatment of heavy metal-laden water.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.10
自引率
5.90%
发文量
1234
审稿时长
88 days
期刊介绍: Ecotoxicology and Environmental Safety is a multi-disciplinary journal that focuses on understanding the exposure and effects of environmental contamination on organisms including human health. The scope of the journal covers three main themes. The topics within these themes, indicated below, include (but are not limited to) the following: Ecotoxicology、Environmental Chemistry、Environmental Safety etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信