{"title":"Role of the nasal cavity as a perception site of environmental humidity via a menthol-sensitive cold reception mechanism","authors":"Hironori Watanabe , Issei Kato , Taisuke Sugi , Kei Nagashima","doi":"10.1016/j.jtherbio.2025.104109","DOIUrl":null,"url":null,"abstract":"<div><div>Humans can sense environmental humidity; however, the mechanism underlying this ability remains unclear. This study aimed to clarify whether the nasal cavity is involved in humidity sensation. Experiments were conducted on healthy young adults, in which controlled nasal inhalation was conducted under four air conditions (i.e., temperature of 25 °C or 34 °C with relative humidity [RH] of 30 % and 70 %). The temperature of the nasal mucosa and the thermal and humidity sensations of the inhaled air were assessed in the first experiment. In the second and third experiments, sublimated <em>l</em>-menthol was added to the inhaled air, and the sensations of the inhaled air were evaluated. The temperature of the nasal mucosa was higher in inhaled air at 34 °C with 30 % RH than at 25 °C. The rating for thermal sensation (warm sensation) was the highest at 34 °C and 70 % RH. At both temperatures, the humidity sensation rating was higher in air with 70 % RH than in air with 30 % RH. Linear relationships were observed between the ratings for thermal and humidity sensations under the four conditions (R<sup>2</sup> = 0.339–0.516). The thermal sensation rating decreased when air at 34 °C was inhaled with <em>l</em>-menthol. A linear relationship was also observed between the ratings for thermal and humidity sensations under this condition (R<sup>2</sup> = 0.665). These findings suggest that the nasal cavity is critical for the sensation of humidity in an environment in which cold reception via the TRPM8 channel is involved.</div></div>","PeriodicalId":17428,"journal":{"name":"Journal of thermal biology","volume":"129 ","pages":"Article 104109"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of thermal biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030645652500066X","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Humans can sense environmental humidity; however, the mechanism underlying this ability remains unclear. This study aimed to clarify whether the nasal cavity is involved in humidity sensation. Experiments were conducted on healthy young adults, in which controlled nasal inhalation was conducted under four air conditions (i.e., temperature of 25 °C or 34 °C with relative humidity [RH] of 30 % and 70 %). The temperature of the nasal mucosa and the thermal and humidity sensations of the inhaled air were assessed in the first experiment. In the second and third experiments, sublimated l-menthol was added to the inhaled air, and the sensations of the inhaled air were evaluated. The temperature of the nasal mucosa was higher in inhaled air at 34 °C with 30 % RH than at 25 °C. The rating for thermal sensation (warm sensation) was the highest at 34 °C and 70 % RH. At both temperatures, the humidity sensation rating was higher in air with 70 % RH than in air with 30 % RH. Linear relationships were observed between the ratings for thermal and humidity sensations under the four conditions (R2 = 0.339–0.516). The thermal sensation rating decreased when air at 34 °C was inhaled with l-menthol. A linear relationship was also observed between the ratings for thermal and humidity sensations under this condition (R2 = 0.665). These findings suggest that the nasal cavity is critical for the sensation of humidity in an environment in which cold reception via the TRPM8 channel is involved.
期刊介绍:
The Journal of Thermal Biology publishes articles that advance our knowledge on the ways and mechanisms through which temperature affects man and animals. This includes studies of their responses to these effects and on the ecological consequences. Directly relevant to this theme are:
• The mechanisms of thermal limitation, heat and cold injury, and the resistance of organisms to extremes of temperature
• The mechanisms involved in acclimation, acclimatization and evolutionary adaptation to temperature
• Mechanisms underlying the patterns of hibernation, torpor, dormancy, aestivation and diapause
• Effects of temperature on reproduction and development, growth, ageing and life-span
• Studies on modelling heat transfer between organisms and their environment
• The contributions of temperature to effects of climate change on animal species and man
• Studies of conservation biology and physiology related to temperature
• Behavioural and physiological regulation of body temperature including its pathophysiology and fever
• Medical applications of hypo- and hyperthermia
Article types:
• Original articles
• Review articles