{"title":"Enhancing anaerobic methane production in the co-presence of PLA, TPS, and PBAT mixed under hydrogen-rich conditions","authors":"Eun Seo Lee , Seon Yeong Park , Chang Gyun Kim","doi":"10.1016/j.ibiod.2025.106094","DOIUrl":null,"url":null,"abstract":"<div><div>Methane (CH<sub>4</sub>) production was compared during mesophilic anaerobic digestion (AD) under H<sub>2</sub>/CO<sub>2</sub> purged versus N<sub>2</sub> purged, investigating the biodecomposition of polylactic acid (PLA), thermoplastic starch (TPS), and polybutylene adipate terephthalate (PBAT) as the co-presence of PLA/TPS (LS), TPS/PBAT (SB), PLA/PBAT (LB), and PLA/TPS/PBAT (LSB). Therein, 427.37 and 339.22 mL CH<sub>4</sub>/g volatile solid (VS) were produced endogenously under H<sub>2</sub>/CO<sub>2</sub> and N<sub>2</sub> purged, respectively. CH<sub>4</sub> production from LS and SB was further increased from 170 to 193 mL CH<sub>4</sub>/g VS compared to the respective control samples. The degradation of LB and LSB resulted in significantly higher CH<sub>4</sub> production under H<sub>2</sub>/CO<sub>2</sub> (157.49 and 229.21 mL CH<sub>4</sub>/g VS) than under N<sub>2</sub> (106.88 and 119.63 mL CH<sub>4</sub>/g VS, respectively). Metagenome sequencing revealed that H<sub>2</sub>/CO<sub>2</sub> purged led syntrophs of hydrogenotrophic methanogens (e.g., <em>Firmicutes</em>) overcoming higher strengths of fatty acids and utilizing H<sub>2</sub> to produce more CH<sub>4</sub>. Subsequently, PLA and PBAT exhibited breakdowns in the polymer chains and molecular weight along with increased crystallinity. This was confirmed through Fourier transform infrared spectroscopy (FTIR), gel permeation chromatography (GPC), and differential scanning calorimetry (DSC). This study highlights the critical roles of co-digestion with H<sub>2</sub> and bioplastics in increasing CH<sub>4</sub> production in the AD system.</div></div>","PeriodicalId":13643,"journal":{"name":"International Biodeterioration & Biodegradation","volume":"202 ","pages":"Article 106094"},"PeriodicalIF":4.1000,"publicationDate":"2025-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Biodeterioration & Biodegradation","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0964830525000988","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Methane (CH4) production was compared during mesophilic anaerobic digestion (AD) under H2/CO2 purged versus N2 purged, investigating the biodecomposition of polylactic acid (PLA), thermoplastic starch (TPS), and polybutylene adipate terephthalate (PBAT) as the co-presence of PLA/TPS (LS), TPS/PBAT (SB), PLA/PBAT (LB), and PLA/TPS/PBAT (LSB). Therein, 427.37 and 339.22 mL CH4/g volatile solid (VS) were produced endogenously under H2/CO2 and N2 purged, respectively. CH4 production from LS and SB was further increased from 170 to 193 mL CH4/g VS compared to the respective control samples. The degradation of LB and LSB resulted in significantly higher CH4 production under H2/CO2 (157.49 and 229.21 mL CH4/g VS) than under N2 (106.88 and 119.63 mL CH4/g VS, respectively). Metagenome sequencing revealed that H2/CO2 purged led syntrophs of hydrogenotrophic methanogens (e.g., Firmicutes) overcoming higher strengths of fatty acids and utilizing H2 to produce more CH4. Subsequently, PLA and PBAT exhibited breakdowns in the polymer chains and molecular weight along with increased crystallinity. This was confirmed through Fourier transform infrared spectroscopy (FTIR), gel permeation chromatography (GPC), and differential scanning calorimetry (DSC). This study highlights the critical roles of co-digestion with H2 and bioplastics in increasing CH4 production in the AD system.
研究了在H2/CO2净化和N2净化条件下,聚乳酸(PLA)、热塑性淀粉(TPS)和聚己二酸丁二醇对苯二甲酸酯(PBAT)在PLA/TPS (LS)、TPS/PBAT (SB)、PLA/PBAT (LB)和PLA/TPS/PBAT (LSB)共存在下的生物分解。其中,在H2/CO2和N2净化下,内源产生的CH4含量分别为427.37和339.22 mL /g。与对照样品相比,LS和SB的CH4产量从170 mL /g VS进一步增加到193 mL /g VS。H2/CO2条件下LB和LSB的CH4产率(157.49和229.21 mL CH4/g VS)显著高于N2条件下(106.88和119.63 mL CH4/g VS)。宏基因组测序显示,H2/CO2净化导致氢营养产甲烷菌(如厚壁菌门)的合养菌克服了较高的脂肪酸强度,并利用H2产生更多的CH4。随后,PLA和PBAT的聚合物链和分子量随着结晶度的增加而发生断裂。通过傅里叶变换红外光谱(FTIR)、凝胶渗透色谱(GPC)和差示扫描量热法(DSC)证实了这一点。本研究强调了在AD系统中与H2和生物塑料共消化在增加CH4产量中的关键作用。
期刊介绍:
International Biodeterioration and Biodegradation publishes original research papers and reviews on the biological causes of deterioration or degradation.