Wenguang Sun , Stephen M. Ogle , Yao Zhang , Andrew E. Schuh , Ian T Baker , Troy S. Magney , Francis Ulep , Shahriar S. Heydari
{"title":"Improving process-based modeling of crop production in the DayCent ecosystem model with solar-induced chlorophyll fluorescence","authors":"Wenguang Sun , Stephen M. Ogle , Yao Zhang , Andrew E. Schuh , Ian T Baker , Troy S. Magney , Francis Ulep , Shahriar S. Heydari","doi":"10.1016/j.ecolmodel.2025.111116","DOIUrl":null,"url":null,"abstract":"<div><div>Solar-induced chlorophyll fluorescence (SIF), as the red and far‐red light emitted from excited chlorophyll‐a molecules during photosynthesis, has been increasingly used for estimating gross primary production (GPP). DayCent is a process-based ecosystem model that mechanistically simulates time-dependent biogeochemical processes of the plant and soil system at a daily time-step. The present study explored a series of key modifications to develop photosynthetic equations with the Mechanistic Light Response (MLR) framework. We used published ground‐based measurements derived from five cropland sites with multiple years of data in the central region of United States to calibrate and evaluate the MLR framework in DayCent. Three versions of the DayCent SIF model were developed and tested based on variation in algorithms and main parameters in MLR equation. The best fit model version for predicting seasonal GPP rates used temperature to capture the seasonal variation of the maximum photochemical efficiency of photosystem II (Φ<sub>PSIImax</sub>) and directly calculated the intercellular CO<sub>2</sub> concentration (C<sub>i</sub>) based on Eco-Evolutionary Optimality (EEO) theory, with index of agreement (IA) varying between 0.76 and 0.88 and root mean square error (RMSE) between 3.93 and 6.76 g C <em>m</em><sup>−2</sup> d<sup>-1</sup>. This version of the model also has significantly better agreement with measured GPP, as demonstrated by higher IA value and lower RMSE value when compared to conventional Radiation Use Efficiency (RUE) approaches, even when informed by the MODIS Enhanced Vegetation Index (EVI). This study demonstrates that a mechanistic modeling framework informed by SIF observations can improve process-based modeling of crop production.</div></div>","PeriodicalId":51043,"journal":{"name":"Ecological Modelling","volume":"505 ","pages":"Article 111116"},"PeriodicalIF":2.6000,"publicationDate":"2025-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Modelling","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304380025001024","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Solar-induced chlorophyll fluorescence (SIF), as the red and far‐red light emitted from excited chlorophyll‐a molecules during photosynthesis, has been increasingly used for estimating gross primary production (GPP). DayCent is a process-based ecosystem model that mechanistically simulates time-dependent biogeochemical processes of the plant and soil system at a daily time-step. The present study explored a series of key modifications to develop photosynthetic equations with the Mechanistic Light Response (MLR) framework. We used published ground‐based measurements derived from five cropland sites with multiple years of data in the central region of United States to calibrate and evaluate the MLR framework in DayCent. Three versions of the DayCent SIF model were developed and tested based on variation in algorithms and main parameters in MLR equation. The best fit model version for predicting seasonal GPP rates used temperature to capture the seasonal variation of the maximum photochemical efficiency of photosystem II (ΦPSIImax) and directly calculated the intercellular CO2 concentration (Ci) based on Eco-Evolutionary Optimality (EEO) theory, with index of agreement (IA) varying between 0.76 and 0.88 and root mean square error (RMSE) between 3.93 and 6.76 g C m−2 d-1. This version of the model also has significantly better agreement with measured GPP, as demonstrated by higher IA value and lower RMSE value when compared to conventional Radiation Use Efficiency (RUE) approaches, even when informed by the MODIS Enhanced Vegetation Index (EVI). This study demonstrates that a mechanistic modeling framework informed by SIF observations can improve process-based modeling of crop production.
期刊介绍:
The journal is concerned with the use of mathematical models and systems analysis for the description of ecological processes and for the sustainable management of resources. Human activity and well-being are dependent on and integrated with the functioning of ecosystems and the services they provide. We aim to understand these basic ecosystem functions using mathematical and conceptual modelling, systems analysis, thermodynamics, computer simulations, and ecological theory. This leads to a preference for process-based models embedded in theory with explicit causative agents as opposed to strictly statistical or correlative descriptions. These modelling methods can be applied to a wide spectrum of issues ranging from basic ecology to human ecology to socio-ecological systems. The journal welcomes research articles, short communications, review articles, letters to the editor, book reviews, and other communications. The journal also supports the activities of the [International Society of Ecological Modelling (ISEM)](http://www.isemna.org/).