Forbidden Pairs of disconnected graphs for traceability and hamiltonicity

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Hongli Liao, Qiang Wang, Liming Xiong, Zhang Zhang
{"title":"Forbidden Pairs of disconnected graphs for traceability and hamiltonicity","authors":"Hongli Liao,&nbsp;Qiang Wang,&nbsp;Liming Xiong,&nbsp;Zhang Zhang","doi":"10.1016/j.dam.2025.04.002","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we firstly characterize all forbidden pairs <span><math><mrow><mo>{</mo><mi>R</mi><mo>,</mo><mi>S</mi><mo>}</mo></mrow></math></span> for graphs with a spanning trail that are traceable and traceable graphs that are hamiltonian. There is no change of forbidden pairs for hamiltonicity if we impose a necessary condition of assumption that the graph is traceable; however, there is some difference of forbidden pairs for traceability if we impose a necessary condition that the graph has a spanning trail: different on two pairs of forbidden subgraphs <span><math><mrow><mrow><mo>{</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>3</mn></mrow></msub><mo>,</mo><msub><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∪</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>}</mo></mrow><mo>,</mo><mrow><mo>{</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>4</mn></mrow></msub><mo>,</mo><msub><mrow><mi>Z</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>}</mo></mrow></mrow></math></span> (where <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is the graph obtained by identifying a vertex of a <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> with an end-vertex of a <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>i</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>).</div><div>As a byproduct, we prove that if <span><math><mi>G</mi></math></span> is a connected <span><math><mrow><mo>{</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>4</mn></mrow></msub><mo>,</mo><msub><mrow><mi>Z</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>}</mo></mrow></math></span>-free graph, then every subgraph <span><math><mrow><mi>G</mi><mrow><mo>[</mo><mi>T</mi><mo>]</mo></mrow></mrow></math></span> induced by a trail <span><math><mi>T</mi></math></span> is traceable and every subgraph <span><math><mrow><mi>G</mi><mrow><mo>[</mo><mi>T</mi><mo>]</mo></mrow></mrow></math></span> induced by a closed trail <span><math><mi>T</mi></math></span> is either hamiltonian or <span><math><mrow><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∨</mo><mn>3</mn><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"371 ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X2500174X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we firstly characterize all forbidden pairs {R,S} for graphs with a spanning trail that are traceable and traceable graphs that are hamiltonian. There is no change of forbidden pairs for hamiltonicity if we impose a necessary condition of assumption that the graph is traceable; however, there is some difference of forbidden pairs for traceability if we impose a necessary condition that the graph has a spanning trail: different on two pairs of forbidden subgraphs {K1,3,Z2K1},{K1,4,Z1} (where Zi is the graph obtained by identifying a vertex of a K3 with an end-vertex of a Pi+1).
As a byproduct, we prove that if G is a connected {K1,4,Z1}-free graph, then every subgraph G[T] induced by a trail T is traceable and every subgraph G[T] induced by a closed trail T is either hamiltonian or K23K1.
用于可追溯性和哈密性的断开图的禁止对
在本文中,我们首先描述了有跨迹的可溯源图和可溯源的哈密顿图的所有禁止对{R,S}。如果我们施加一个假设必要条件,即图是可溯源的,则hamiltonicity 的禁止对没有任何变化;但是,如果我们施加一个假设必要条件,即图是有spanning trail 的,则可溯源性的禁止对有一些不同:在两对禁止子图{K1,3,Z2∪K1},{K1,4,Z1}(其中 Zi 是将 K3 的一个顶点与 Pi+1 的一个末端顶点识别后得到的图)上不同。作为副产品,我们证明,如果 G 是一个连通的 {K1,4,Z1} 无图,那么由轨迹 T 引导的每个子图 G[T] 都是可跟踪的,而由封闭轨迹 T 引导的每个子图 G[T] 要么是哈密顿图,要么是 K2∨3K1 图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信