Emiliano Felici , Coral González-Martínez , Teresa Valero Griñán , Sheila Gato-Zambrano , Sirley V. Pereira , Martín A. Fernández-Baldo , Francisco G. Ortega-Sanchez
{"title":"Electrochemical immunoplatform for the quantification of epithelial extracellular vesicles applied to prostate cancer diagnosis","authors":"Emiliano Felici , Coral González-Martínez , Teresa Valero Griñán , Sheila Gato-Zambrano , Sirley V. Pereira , Martín A. Fernández-Baldo , Francisco G. Ortega-Sanchez","doi":"10.1016/j.talanta.2025.128130","DOIUrl":null,"url":null,"abstract":"<div><div>Prostate cancer (PCa) is the second most commonly diagnosed cancer in men worldwide, and its early detection is critical for improving patient outcomes through timely and effective treatment. In this work, we present the first electrochemical immunoplatform based on magnetic microbeads (MBs) for the determination of epithelial extracellular vesicles (EpEVs), which are emerging as promising biomarkers for PCa diagnosis and prognosis. The immunoplatform employs MBs functionalized with anti-EpCAM antibodies to selectively capture EpEVs, forming sandwich-type immune complexes that are detected via amperometry at disposable screen-printed carbon electrodes. The method demonstrated a detection limit of 0.4 ng μL<sup>−1</sup> of EpEVs obtained from PC-3 cell line's culture, excellent reproducibility (coefficient of variation <5 %), and high selectivity against potential interferences. Comparative analysis with colorimetric immune-magnet ELISA test showed a strong correlation between the two methods, confirming the reliability of the proposed approach. Furthermore, the electrochemical platform provided better precision and a lower limit of detection than the immune magnet ELISA method, indicating its superior analytical performance. Clinical validation using patient samples revealed that the combination of EpEV detection with PSA levels significantly improves the sensitivity and specificity of PCa diagnosis. This novel immunoplatform represents a promising analytical tool for early detection and monitoring of PCa, with potential applications in personalized cancer management.</div></div>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"293 ","pages":"Article 128130"},"PeriodicalIF":5.6000,"publicationDate":"2025-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0039914025006204","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Prostate cancer (PCa) is the second most commonly diagnosed cancer in men worldwide, and its early detection is critical for improving patient outcomes through timely and effective treatment. In this work, we present the first electrochemical immunoplatform based on magnetic microbeads (MBs) for the determination of epithelial extracellular vesicles (EpEVs), which are emerging as promising biomarkers for PCa diagnosis and prognosis. The immunoplatform employs MBs functionalized with anti-EpCAM antibodies to selectively capture EpEVs, forming sandwich-type immune complexes that are detected via amperometry at disposable screen-printed carbon electrodes. The method demonstrated a detection limit of 0.4 ng μL−1 of EpEVs obtained from PC-3 cell line's culture, excellent reproducibility (coefficient of variation <5 %), and high selectivity against potential interferences. Comparative analysis with colorimetric immune-magnet ELISA test showed a strong correlation between the two methods, confirming the reliability of the proposed approach. Furthermore, the electrochemical platform provided better precision and a lower limit of detection than the immune magnet ELISA method, indicating its superior analytical performance. Clinical validation using patient samples revealed that the combination of EpEV detection with PSA levels significantly improves the sensitivity and specificity of PCa diagnosis. This novel immunoplatform represents a promising analytical tool for early detection and monitoring of PCa, with potential applications in personalized cancer management.
期刊介绍:
Talanta provides a forum for the publication of original research papers, short communications, and critical reviews in all branches of pure and applied analytical chemistry. Papers are evaluated based on established guidelines, including the fundamental nature of the study, scientific novelty, substantial improvement or advantage over existing technology or methods, and demonstrated analytical applicability. Original research papers on fundamental studies, and on novel sensor and instrumentation developments, are encouraged. Novel or improved applications in areas such as clinical and biological chemistry, environmental analysis, geochemistry, materials science and engineering, and analytical platforms for omics development are welcome.
Analytical performance of methods should be determined, including interference and matrix effects, and methods should be validated by comparison with a standard method, or analysis of a certified reference material. Simple spiking recoveries may not be sufficient. The developed method should especially comprise information on selectivity, sensitivity, detection limits, accuracy, and reliability. However, applying official validation or robustness studies to a routine method or technique does not necessarily constitute novelty. Proper statistical treatment of the data should be provided. Relevant literature should be cited, including related publications by the authors, and authors should discuss how their proposed methodology compares with previously reported methods.