Hardware efficient approximate sigmoid activation function for classifying features around zero

IF 2.2 3区 工程技术 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Shreya Venkatesh, R. Sindhu, V. Arunachalam
{"title":"Hardware efficient approximate sigmoid activation function for classifying features around zero","authors":"Shreya Venkatesh,&nbsp;R. Sindhu,&nbsp;V. Arunachalam","doi":"10.1016/j.vlsi.2025.102421","DOIUrl":null,"url":null,"abstract":"<div><div>The binary classification of features around zero in an RNN-LSTM network requires accurate sigmoid activation. The approximate sigmoid activation function is preferred to reduce the computational complexity and hardware resources. Therefore, an IMDB dataset is considered for the Python-based data analysis, the features are passed through the LSTM layer, the dense layer, and finally the sigmoid activation function for binary classification. From the analysis, an approximate 3-term, 8-segment Taylor series sigmoid (<span><math><mrow><mrow><msub><mi>σ</mi><mrow><mi>T</mi><mo>_</mo><mn>3</mn><mo>_</mo><mn>8</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow><mo>)</mo></mrow></math></span> is proposed with an 11-bit customized floating-point (CFP) and provides sufficient accuracy. The <span><math><mrow><msub><mi>σ</mi><mrow><mi>T</mi><mo>_</mo><mn>3</mn><mo>_</mo><mn>8</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> is implemented with an efficient range select controller, data scheduler and area-efficient arithmetic processing unit (APU). The APU is implemented with a CFP multiplier (CFP-Mul) and Exponent-aware CFP adder (EACFP-Add). Therefore, the FPGA implementation uses fewer hardware resources (LUT, FF and DSP) and obtained 1658 <strong><em>μ</em></strong>m<sup>2</sup> and 0.3305 mW power at 500 MHz in TSMC 65 nm ASIC implementation. This proposed function <span><math><mrow><msub><mi>σ</mi><mrow><mi>T</mi><mo>_</mo><mn>3</mn><mo>_</mo><mn>8</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> is used in the LSTM cell and classification layer. With the IMDB and SMS spam detection datasets, it provides near-classification metrics compared to the exact <em>σ</em>(<em>x</em>).</div></div>","PeriodicalId":54973,"journal":{"name":"Integration-The Vlsi Journal","volume":"103 ","pages":"Article 102421"},"PeriodicalIF":2.2000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integration-The Vlsi Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167926025000781","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

The binary classification of features around zero in an RNN-LSTM network requires accurate sigmoid activation. The approximate sigmoid activation function is preferred to reduce the computational complexity and hardware resources. Therefore, an IMDB dataset is considered for the Python-based data analysis, the features are passed through the LSTM layer, the dense layer, and finally the sigmoid activation function for binary classification. From the analysis, an approximate 3-term, 8-segment Taylor series sigmoid (σT_3_8(x)) is proposed with an 11-bit customized floating-point (CFP) and provides sufficient accuracy. The σT_3_8(x) is implemented with an efficient range select controller, data scheduler and area-efficient arithmetic processing unit (APU). The APU is implemented with a CFP multiplier (CFP-Mul) and Exponent-aware CFP adder (EACFP-Add). Therefore, the FPGA implementation uses fewer hardware resources (LUT, FF and DSP) and obtained 1658 μm2 and 0.3305 mW power at 500 MHz in TSMC 65 nm ASIC implementation. This proposed function σT_3_8(x) is used in the LSTM cell and classification layer. With the IMDB and SMS spam detection datasets, it provides near-classification metrics compared to the exact σ(x).
硬件高效近似s型激活函数对零附近特征进行分类
在RNN-LSTM网络中,零点附近特征的二值分类需要精确的s形激活。为了减少计算复杂度和硬件资源,建议采用近似的s型激活函数。因此,考虑一个IMDB数据集进行基于python的数据分析,特征通过LSTM层、dense层,最后通过sigmoid激活函数进行二值分类。通过分析,提出了一个近似的3项8段泰勒级数sigmoid (σT_3_8(x)),该级数具有11位自定义浮点数(CFP),并提供了足够的精度。σT_3_8(x)由高效的范围选择控制器、数据调度程序和面积高效的算术处理单元(APU)实现。该APU由CFP乘法器(CFP- mul)和指数感知CFP加法器(EACFP-Add)实现。因此,FPGA实现使用较少的硬件资源(LUT, FF和DSP),在台积电65nm ASIC实现中获得1658 μm2和0.3305 mW的500 MHz功率。提出的函数σT_3_8(x)用于LSTM单元和分类层。对于IMDB和SMS垃圾邮件检测数据集,与精确的σ(x)相比,它提供了接近分类的度量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Integration-The Vlsi Journal
Integration-The Vlsi Journal 工程技术-工程:电子与电气
CiteScore
3.80
自引率
5.30%
发文量
107
审稿时长
6 months
期刊介绍: Integration''s aim is to cover every aspect of the VLSI area, with an emphasis on cross-fertilization between various fields of science, and the design, verification, test and applications of integrated circuits and systems, as well as closely related topics in process and device technologies. Individual issues will feature peer-reviewed tutorials and articles as well as reviews of recent publications. The intended coverage of the journal can be assessed by examining the following (non-exclusive) list of topics: Specification methods and languages; Analog/Digital Integrated Circuits and Systems; VLSI architectures; Algorithms, methods and tools for modeling, simulation, synthesis and verification of integrated circuits and systems of any complexity; Embedded systems; High-level synthesis for VLSI systems; Logic synthesis and finite automata; Testing, design-for-test and test generation algorithms; Physical design; Formal verification; Algorithms implemented in VLSI systems; Systems engineering; Heterogeneous systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信