Low field NMR based relative permeability and drying model for unsaturated granular materials

IF 6.9 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL
Wonjun Cha , Junghee Park , Sang Inn Woo
{"title":"Low field NMR based relative permeability and drying model for unsaturated granular materials","authors":"Wonjun Cha ,&nbsp;Junghee Park ,&nbsp;Sang Inn Woo","doi":"10.1016/j.enggeo.2025.108071","DOIUrl":null,"url":null,"abstract":"<div><div>Climate change and airflow variations critically influence soil-atmosphere interactions and subsurface evaporation processes. This study investigates the role of particle and pore sizes in the drying dynamics of unsaturated coarse-grained granular media under low-humidity airflow, employing coupled nuclear magnetic resonance <em>NMR</em> and matric suction measurements. Comprehensive experiments analyze grain size impacts on (1) drying rates, (2) matric suction evolution, and (3) <em>T</em><sub><em>2</em></sub> relaxation times. Results reveal that finer-grained specimens retain higher asymptotic saturation due to stronger capillary forces, while smaller mean grain sizes <em>d</em><sub><em>50</em></sub> correlate with elevated matric suction in constant-suction zones. A geometric constant (a = 4), derived from mercury intrusion porosimetry, BET specific surface analysis and NMR spectroscopy with various coarse-grained materials, enables direct conversion of <em>T</em><sub><em>2</em></sub> relaxation times to pore diameter <em>d</em><sub><em>p</em></sub> and assuming simple cubic packing allow to estimate <em>d</em><sub><em>50</em></sub>. This constant underpins a log-normal pore size distribution model that aligns with suction measurements. We propose a three-stage drying model integrating surface evaporation, capillary flow, and soil-internal vapor diffusion, validated against experimental data for glass beads and sand. NMR-derived hydraulic properties enable accurate predictions of drying curves, advancing non-destructive characterization of unsaturated soils for geotechnical applications.</div></div>","PeriodicalId":11567,"journal":{"name":"Engineering Geology","volume":"352 ","pages":"Article 108071"},"PeriodicalIF":6.9000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001379522500167X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Climate change and airflow variations critically influence soil-atmosphere interactions and subsurface evaporation processes. This study investigates the role of particle and pore sizes in the drying dynamics of unsaturated coarse-grained granular media under low-humidity airflow, employing coupled nuclear magnetic resonance NMR and matric suction measurements. Comprehensive experiments analyze grain size impacts on (1) drying rates, (2) matric suction evolution, and (3) T2 relaxation times. Results reveal that finer-grained specimens retain higher asymptotic saturation due to stronger capillary forces, while smaller mean grain sizes d50 correlate with elevated matric suction in constant-suction zones. A geometric constant (a = 4), derived from mercury intrusion porosimetry, BET specific surface analysis and NMR spectroscopy with various coarse-grained materials, enables direct conversion of T2 relaxation times to pore diameter dp and assuming simple cubic packing allow to estimate d50. This constant underpins a log-normal pore size distribution model that aligns with suction measurements. We propose a three-stage drying model integrating surface evaporation, capillary flow, and soil-internal vapor diffusion, validated against experimental data for glass beads and sand. NMR-derived hydraulic properties enable accurate predictions of drying curves, advancing non-destructive characterization of unsaturated soils for geotechnical applications.
基于低场核磁共振的非饱和颗粒材料相对渗透率与干燥模型
气候变化和气流变化对土壤-大气相互作用和地下蒸发过程有着重要影响。本研究采用核磁共振 NMR 和基质吸力耦合测量方法,研究了颗粒和孔隙大小在低湿度气流条件下非饱和粗颗粒介质干燥动力学中的作用。综合实验分析了粒度对 (1) 干燥速率、(2) 基质吸力演变和 (3) T2 弛豫时间的影响。结果表明,由于毛细力较强,颗粒较细的试样能保持较高的渐近饱和度,而较小的平均颗粒尺寸 d50 与恒定吸力区中垫吸力的升高有关。几何常数(a = 4)是通过汞侵入孔隙模拟法、BET 比表面分析法和各种粗粒材料的核磁共振光谱法得出的,它可以将 T2 弛豫时间直接转换为孔隙直径 dp,并假定简单的立方堆积,从而估算出 d50。这个常数是对数正态孔径分布模型的基础,与吸力测量结果一致。我们提出了一个三阶段干燥模型,整合了表面蒸发、毛细流动和土壤内部蒸汽扩散,并根据玻璃珠和沙子的实验数据进行了验证。NMR 衍生的水力特性能够准确预测干燥曲线,从而推进岩土工程应用中非饱和土壤的非破坏性表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Engineering Geology
Engineering Geology 地学-地球科学综合
CiteScore
13.70
自引率
12.20%
发文量
327
审稿时长
5.6 months
期刊介绍: Engineering Geology, an international interdisciplinary journal, serves as a bridge between earth sciences and engineering, focusing on geological and geotechnical engineering. It welcomes studies with relevance to engineering, environmental concerns, and safety, catering to engineering geologists with backgrounds in geology or civil/mining engineering. Topics include applied geomorphology, structural geology, geophysics, geochemistry, environmental geology, hydrogeology, land use planning, natural hazards, remote sensing, soil and rock mechanics, and applied geotechnical engineering. The journal provides a platform for research at the intersection of geology and engineering disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信