Jae Min Cho, Seul-Ki Park, Sohom Mookherjee, Emily Carolyn Peters, Paulo W. Pires, J. David Symons
{"title":"Bryostatin-1 improves function in arteries with suppressed endothelial cell autophagy","authors":"Jae Min Cho, Seul-Ki Park, Sohom Mookherjee, Emily Carolyn Peters, Paulo W. Pires, J. David Symons","doi":"10.1007/s11357-025-01650-5","DOIUrl":null,"url":null,"abstract":"<p>We have previously reported that when autophagy is suppressed in endothelial cells (ECs), a glycolytic defect limits shear-stress -induced ATP production to an extent that purinergic 2Y1 receptor (P2Y1R)-mediated activation of EC nitric oxide (NO) synthase (eNOS) is compromised. Subsequently we demonstrated the functional relevance of this finding in arteries from mice with genetic, pharmacological, and age-associated EC autophagy impairment. Using gain and loss of function approaches in vitro, we further revealed that p-PKCδ<sup>T505</sup> serves as a signaling link between P2Y1R activation and NO generation. Here we sought to discern the functional relevance of this observation. First, shear-stress- induced activating phosphorylation of eNOS (p-eNOS<sup>S1177</sup>) that is otherwise prevented by knockdown of autophagy-related gene 3 (<i>Atg3</i>) in ECs was restored by the PKC agonist bryostatin-1. Next, in murine models of genetic and age-associated EC autophagy compromise, depressed vasodilation displayed by femoral and cerebral arteries was reversed by bryostatin-1 in a manner that could be prevented by concurrent NO synthase inhibition. Finally, the bryostatin-1-mediated normalization of intraluminal flow-induced vasodilation observed in femoral arteries from both models of EC autophagy disruption was mitigated by inhibiting downstream targets of p-PKCδ<sup>T505</sup> i.e., p-PKD<sup>S744/S748</sup> and p-PKD<sup>S916</sup>. These findings provide evidence that stimulating PKC/PKD has strategic potential to restore compromised endothelial function in pathologies associated with suppressed EC autophagy e.g., aging.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":12730,"journal":{"name":"GeroScience","volume":"5 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GeroScience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11357-025-01650-5","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
We have previously reported that when autophagy is suppressed in endothelial cells (ECs), a glycolytic defect limits shear-stress -induced ATP production to an extent that purinergic 2Y1 receptor (P2Y1R)-mediated activation of EC nitric oxide (NO) synthase (eNOS) is compromised. Subsequently we demonstrated the functional relevance of this finding in arteries from mice with genetic, pharmacological, and age-associated EC autophagy impairment. Using gain and loss of function approaches in vitro, we further revealed that p-PKCδT505 serves as a signaling link between P2Y1R activation and NO generation. Here we sought to discern the functional relevance of this observation. First, shear-stress- induced activating phosphorylation of eNOS (p-eNOSS1177) that is otherwise prevented by knockdown of autophagy-related gene 3 (Atg3) in ECs was restored by the PKC agonist bryostatin-1. Next, in murine models of genetic and age-associated EC autophagy compromise, depressed vasodilation displayed by femoral and cerebral arteries was reversed by bryostatin-1 in a manner that could be prevented by concurrent NO synthase inhibition. Finally, the bryostatin-1-mediated normalization of intraluminal flow-induced vasodilation observed in femoral arteries from both models of EC autophagy disruption was mitigated by inhibiting downstream targets of p-PKCδT505 i.e., p-PKDS744/S748 and p-PKDS916. These findings provide evidence that stimulating PKC/PKD has strategic potential to restore compromised endothelial function in pathologies associated with suppressed EC autophagy e.g., aging.
GeroScienceMedicine-Complementary and Alternative Medicine
CiteScore
10.50
自引率
5.40%
发文量
182
期刊介绍:
GeroScience is a bi-monthly, international, peer-reviewed journal that publishes articles related to research in the biology of aging and research on biomedical applications that impact aging. The scope of articles to be considered include evolutionary biology, biophysics, genetics, genomics, proteomics, molecular biology, cell biology, biochemistry, endocrinology, immunology, physiology, pharmacology, neuroscience, and psychology.