Statistical Learning and Topkriging Improve Spatio-Temporal Low-Flow Estimation

IF 4.6 1区 地球科学 Q2 ENVIRONMENTAL SCIENCES
J. Laimighofer, G. Laaha
{"title":"Statistical Learning and Topkriging Improve Spatio-Temporal Low-Flow Estimation","authors":"J. Laimighofer, G. Laaha","doi":"10.1029/2024wr038329","DOIUrl":null,"url":null,"abstract":"This study evaluates the potential of a novel hierarchical space-time model for predicting monthly low-flow in ungauged basins. The model decomposes the monthly low-flows into a mean field and a residual field, where the mean field represents the seasonal low-flow regime plus a long-term trend component. We compare four statistical learning approaches for the mean field, and three geostatistical methods for the residual field. All model combinations are evaluated using a hydrologically diverse dataset of 260 stations in Austria and the predictive performance is validated using nested 10-fold cross-validation. The best model for monthly low-flow prediction is a combination of a model-based boosting approach for the mean field and topkriging for the residual field. This model reaches a median <span data-altimg=\"/cms/asset/bd07921f-b370-432a-af44-864f4985be52/wrcr70042-math-0001.png\"></span><mjx-container ctxtmenu_counter=\"285\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/wrcr70042-math-0001.png\"><mjx-semantics><mjx-mrow><mjx-msup data-semantic-children=\"0,1\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"upper R squared\" data-semantic-type=\"superscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: 0.363em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msup></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:00431397:media:wrcr70042:wrcr70042-math-0001\" display=\"inline\" location=\"graphic/wrcr70042-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><msup data-semantic-=\"\" data-semantic-children=\"0,1\" data-semantic-role=\"latinletter\" data-semantic-speech=\"upper R squared\" data-semantic-type=\"superscript\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">R</mi><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\">2</mn></msup></mrow>${R}^{2}$</annotation></semantics></math></mjx-assistive-mml></mjx-container> of 0.73 across all stations, outperforming an XGBoost model on the same data set. Model performance is generally higher for stations with a winter regime (median <span data-altimg=\"/cms/asset/9899636a-7236-4a2c-900e-7b39fea3ce82/wrcr70042-math-0002.png\"></span><mjx-container ctxtmenu_counter=\"286\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/wrcr70042-math-0002.png\"><mjx-semantics><mjx-mrow><mjx-msup data-semantic-children=\"0,1\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"upper R squared\" data-semantic-type=\"superscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: 0.363em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msup></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:00431397:media:wrcr70042:wrcr70042-math-0002\" display=\"inline\" location=\"graphic/wrcr70042-math-0002.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><msup data-semantic-=\"\" data-semantic-children=\"0,1\" data-semantic-role=\"latinletter\" data-semantic-speech=\"upper R squared\" data-semantic-type=\"superscript\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">R</mi><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\">2</mn></msup></mrow>${R}^{2}$</annotation></semantics></math></mjx-assistive-mml></mjx-container> = 0.84) than for summer regimes (<span data-altimg=\"/cms/asset/56cf668c-3840-47b1-9580-982ed6027e88/wrcr70042-math-0003.png\"></span><mjx-container ctxtmenu_counter=\"287\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/wrcr70042-math-0003.png\"><mjx-semantics><mjx-mrow><mjx-msup data-semantic-children=\"0,1\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"upper R squared\" data-semantic-type=\"superscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: 0.363em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msup></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:00431397:media:wrcr70042:wrcr70042-math-0003\" display=\"inline\" location=\"graphic/wrcr70042-math-0003.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><msup data-semantic-=\"\" data-semantic-children=\"0,1\" data-semantic-role=\"latinletter\" data-semantic-speech=\"upper R squared\" data-semantic-type=\"superscript\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">R</mi><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\">2</mn></msup></mrow>${R}^{2}$</annotation></semantics></math></mjx-assistive-mml></mjx-container> = 0.70), and lowest for the mixed regime type (<span data-altimg=\"/cms/asset/7e36278e-25b5-4c59-b21b-19ddea9a64ef/wrcr70042-math-0004.png\"></span><mjx-container ctxtmenu_counter=\"288\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/wrcr70042-math-0004.png\"><mjx-semantics><mjx-mrow><mjx-msup data-semantic-children=\"0,1\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"upper R squared\" data-semantic-type=\"superscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: 0.363em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msup></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:00431397:media:wrcr70042:wrcr70042-math-0004\" display=\"inline\" location=\"graphic/wrcr70042-math-0004.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><msup data-semantic-=\"\" data-semantic-children=\"0,1\" data-semantic-role=\"latinletter\" data-semantic-speech=\"upper R squared\" data-semantic-type=\"superscript\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">R</mi><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\">2</mn></msup></mrow>${R}^{2}$</annotation></semantics></math></mjx-assistive-mml></mjx-container> = 0.68). The proposed model appears to be most useful in headwater catchments and provides robust estimates not only for moderate events, but also for extreme low-flow events. The favorable performance is due to the hierarchical model structure, which effectively combines different types of information: the low-flow regime estimated from average climate and catchment characteristics, and the actual flow conditions estimated from flow records of neighboring catchments. This information is readily available for most regions of the world, making the model easily transferable to other studies.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":"5 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2024wr038329","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study evaluates the potential of a novel hierarchical space-time model for predicting monthly low-flow in ungauged basins. The model decomposes the monthly low-flows into a mean field and a residual field, where the mean field represents the seasonal low-flow regime plus a long-term trend component. We compare four statistical learning approaches for the mean field, and three geostatistical methods for the residual field. All model combinations are evaluated using a hydrologically diverse dataset of 260 stations in Austria and the predictive performance is validated using nested 10-fold cross-validation. The best model for monthly low-flow prediction is a combination of a model-based boosting approach for the mean field and topkriging for the residual field. This model reaches a median R2${R}^{2}$ of 0.73 across all stations, outperforming an XGBoost model on the same data set. Model performance is generally higher for stations with a winter regime (median R2${R}^{2}$ = 0.84) than for summer regimes (R2${R}^{2}$ = 0.70), and lowest for the mixed regime type (R2${R}^{2}$ = 0.68). The proposed model appears to be most useful in headwater catchments and provides robust estimates not only for moderate events, but also for extreme low-flow events. The favorable performance is due to the hierarchical model structure, which effectively combines different types of information: the low-flow regime estimated from average climate and catchment characteristics, and the actual flow conditions estimated from flow records of neighboring catchments. This information is readily available for most regions of the world, making the model easily transferable to other studies.
统计学习和Topkriging改进时空低流量估计
本研究评估了一种新的分层时空模型在未测量流域预测月低流量的潜力。该模型将月低流量分解为平均场和残差场,其中平均场代表季节性低流量状态加上长期趋势分量。我们比较了平均场的四种统计学习方法和残差场的三种地统计学方法。所有模型组合都使用奥地利260个站点的水文多样性数据集进行评估,并使用嵌套的10倍交叉验证来验证预测性能。月低流量预测的最佳模型是结合基于模型的平均场增强方法和残差场topkriging方法。该模型在所有站点上的中位数R2${R}^{2}$为0.73,优于同一数据集上的XGBoost模型。冬季模式模式的模型性能一般高于夏季模式模式(R2${R}^{2}$ = 0.70),混合模式模式的模型性能最低(R2${R}^{2}$ = 0.68)。所提出的模型似乎在水源集水区最有用,不仅对中等流量事件,而且对极端低流量事件提供了可靠的估计。分层模型结构有效地结合了不同类型的信息:从平均气候和流域特征估计的低流量状态,以及从邻近流域的流量记录估计的实际流量状况。这一信息在世界上大多数地区都很容易获得,这使得该模型很容易转移到其他研究中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Water Resources Research
Water Resources Research 环境科学-湖沼学
CiteScore
8.80
自引率
13.00%
发文量
599
审稿时长
3.5 months
期刊介绍: Water Resources Research (WRR) is an interdisciplinary journal that focuses on hydrology and water resources. It publishes original research in the natural and social sciences of water. It emphasizes the role of water in the Earth system, including physical, chemical, biological, and ecological processes in water resources research and management, including social, policy, and public health implications. It encompasses observational, experimental, theoretical, analytical, numerical, and data-driven approaches that advance the science of water and its management. Submissions are evaluated for their novelty, accuracy, significance, and broader implications of the findings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信