Streamflow Monitoring at High Temporal Resolution Based on Non-Contact Instruments and Manually Surveyed Bathymetry in a River Prone to Bathymetric Shifts
G. Nord, S. Safdar, M. Hasanyar, K. O. Eze, R. Biron, G. Freche, H. Denis, C. Legout, A. Hauet, M. Esteves
{"title":"Streamflow Monitoring at High Temporal Resolution Based on Non-Contact Instruments and Manually Surveyed Bathymetry in a River Prone to Bathymetric Shifts","authors":"G. Nord, S. Safdar, M. Hasanyar, K. O. Eze, R. Biron, G. Freche, H. Denis, C. Legout, A. Hauet, M. Esteves","doi":"10.1029/2024wr037536","DOIUrl":null,"url":null,"abstract":"This study presents a proof of concept of a reliable methodology for monitoring streamflow in a dynamic river of the Alps prone to bathymetric changes using non-contact instruments. The method relies on water level and surface velocity radar monitoring, discharge measurements by Large-Scale Particle Image Velocimetry (LSPIV), and topographic surveys. A single proportional relation, stable under bathymetric changes, is established between maximum surface velocity (<i>V</i><sub>s,max</sub>) and bulk velocity (<i>U</i><sub>mean</sub>) using LSPIV measurements. The location of the maximum surface velocity is also shown to be relatively stable under bathymetric changes. The Isovel model, a theoretical approach which requires minimal information (i.e., bathymetry, water level and bed roughness) is also used to assess its capacity to predict the <i>V</i><sub>s,max</sub>–<i>U</i><sub>mean</sub> relation and the location of the maximum surface velocity. Such model could be useful for applying the method in the absence of LSPIV measurements in the future. The applicability of the method is finally tested over a 2.5-year data set. Discharge is calculated at a time step of 10 min by multiplying the bulk velocity and the wetted cross-sectional area. The results are compared to the specific discharge time series at the historical station located 2.5 km further upstream, which has a stage-discharge rating curve, to assess the credibility of the proposed method. Good agreement is generally observed when surface velocity is above 0.7 m/s, but accuracy decreases for lower velocities. A simplified uncertainty analysis estimates a 25% relative error on discharge calculated with the presented method.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":"55 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2024wr037536","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents a proof of concept of a reliable methodology for monitoring streamflow in a dynamic river of the Alps prone to bathymetric changes using non-contact instruments. The method relies on water level and surface velocity radar monitoring, discharge measurements by Large-Scale Particle Image Velocimetry (LSPIV), and topographic surveys. A single proportional relation, stable under bathymetric changes, is established between maximum surface velocity (Vs,max) and bulk velocity (Umean) using LSPIV measurements. The location of the maximum surface velocity is also shown to be relatively stable under bathymetric changes. The Isovel model, a theoretical approach which requires minimal information (i.e., bathymetry, water level and bed roughness) is also used to assess its capacity to predict the Vs,max–Umean relation and the location of the maximum surface velocity. Such model could be useful for applying the method in the absence of LSPIV measurements in the future. The applicability of the method is finally tested over a 2.5-year data set. Discharge is calculated at a time step of 10 min by multiplying the bulk velocity and the wetted cross-sectional area. The results are compared to the specific discharge time series at the historical station located 2.5 km further upstream, which has a stage-discharge rating curve, to assess the credibility of the proposed method. Good agreement is generally observed when surface velocity is above 0.7 m/s, but accuracy decreases for lower velocities. A simplified uncertainty analysis estimates a 25% relative error on discharge calculated with the presented method.
期刊介绍:
Water Resources Research (WRR) is an interdisciplinary journal that focuses on hydrology and water resources. It publishes original research in the natural and social sciences of water. It emphasizes the role of water in the Earth system, including physical, chemical, biological, and ecological processes in water resources research and management, including social, policy, and public health implications. It encompasses observational, experimental, theoretical, analytical, numerical, and data-driven approaches that advance the science of water and its management. Submissions are evaluated for their novelty, accuracy, significance, and broader implications of the findings.