Deciphering Complex Electrochemical Reaction Dynamics and Interactions of Single Nano-Entities via Evanescent Scattering Microscopy

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jiaying Li, Peng Lin, Liwei Wu, Yuxi Yue, Guangzhong Ma
{"title":"Deciphering Complex Electrochemical Reaction Dynamics and Interactions of Single Nano-Entities via Evanescent Scattering Microscopy","authors":"Jiaying Li, Peng Lin, Liwei Wu, Yuxi Yue, Guangzhong Ma","doi":"10.1002/anie.202506226","DOIUrl":null,"url":null,"abstract":"Electrochemical reactions at the nanoscale are governed by intricate surface interactions, yet existing imaging techniques often lack the surface sensitivity and throughput needed to resolve these dynamics clearly. Here, we introduce electrochemical evanescent scattering microscopy (EC-ESM), a high-throughput, surface-sensitive imaging technique that enables real-time tracking of single-nanoentity electrochemistry with high resolution. Using EC-ESM, we monitored the motion and dissolution dynamics of silver nanoparticles and identified a clear relationship between nanoparticle velocity and electron transfer rates. The high throughput of EC-ESM not only ensures statistical reliability but also allows the detection of rare electron transfer events in molecularly modified AgNPs. Additionally, EC-ESM’s high resolution enabled direct imaging of both single and interacting silver nanowires, revealing diverse dissolution behaviors that provide insights into structural and surface properties. We envision EC-ESM as a powerful platform for advancing nanoscale electrochemical research and interfacial charge transfer studies.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"29 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202506226","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Electrochemical reactions at the nanoscale are governed by intricate surface interactions, yet existing imaging techniques often lack the surface sensitivity and throughput needed to resolve these dynamics clearly. Here, we introduce electrochemical evanescent scattering microscopy (EC-ESM), a high-throughput, surface-sensitive imaging technique that enables real-time tracking of single-nanoentity electrochemistry with high resolution. Using EC-ESM, we monitored the motion and dissolution dynamics of silver nanoparticles and identified a clear relationship between nanoparticle velocity and electron transfer rates. The high throughput of EC-ESM not only ensures statistical reliability but also allows the detection of rare electron transfer events in molecularly modified AgNPs. Additionally, EC-ESM’s high resolution enabled direct imaging of both single and interacting silver nanowires, revealing diverse dissolution behaviors that provide insights into structural and surface properties. We envision EC-ESM as a powerful platform for advancing nanoscale electrochemical research and interfacial charge transfer studies.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信