A cellulose based fluorescent microsphere for sensitive detection and efficient removal of hydrazine and its versatile applications in environmental samples and live plants

IF 12.2 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Zhiyuan Meng, Xinyan Li, Qian Ye, Shuo Zhang, Xu Xu, Yiqin Yang, Zhonglong Wang, Shifa Wang
{"title":"A cellulose based fluorescent microsphere for sensitive detection and efficient removal of hydrazine and its versatile applications in environmental samples and live plants","authors":"Zhiyuan Meng, Xinyan Li, Qian Ye, Shuo Zhang, Xu Xu, Yiqin Yang, Zhonglong Wang, Shifa Wang","doi":"10.1016/j.jhazmat.2025.138253","DOIUrl":null,"url":null,"abstract":"Hydrazine (N<sub>2</sub>H<sub>4</sub>) is being extensively utilized in various industrial fields, yet its high toxicity can cause enormous adverse effects on human health and the ecological environment. Herein, an aggregation-induced emission (AIE) fluorescent probe <strong>FNA-B-CA</strong> (naphthalimide small molecule (<strong>FNA-B</strong>) grafting onto cellulose acetate (<strong>CA</strong>)) for sensitive detection and high effective removal of N<sub>2</sub>H<sub>4</sub> was synthesized. Probe <strong>FNA-B-CA</strong> can recognize N<sub>2</sub>H<sub>4</sub> across a wide pH range (5−12) with a low detection limit (84<!-- --> <!-- -->nM), high selectivity, and strong anti-interference ability. It enabled quantitative detection of N₂H₄ concentrations in actual water and soil samples quantitatively and functioned as an efficient tool for tracking N<sub>2</sub>H<sub>4</sub> in plant tissue (bean sprouts). More importantly, probe <strong>FNA-B-CA</strong> was hereby successfully prepared into fluorescent microspheres using the favorable processing properties of <strong>CA</strong>, further facilitating the simultaneous detection and adsorption of N<sub>2</sub>H<sub>4</sub> in aqueous solutions.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"39 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2025.138253","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrazine (N2H4) is being extensively utilized in various industrial fields, yet its high toxicity can cause enormous adverse effects on human health and the ecological environment. Herein, an aggregation-induced emission (AIE) fluorescent probe FNA-B-CA (naphthalimide small molecule (FNA-B) grafting onto cellulose acetate (CA)) for sensitive detection and high effective removal of N2H4 was synthesized. Probe FNA-B-CA can recognize N2H4 across a wide pH range (5−12) with a low detection limit (84 nM), high selectivity, and strong anti-interference ability. It enabled quantitative detection of N₂H₄ concentrations in actual water and soil samples quantitatively and functioned as an efficient tool for tracking N2H4 in plant tissue (bean sprouts). More importantly, probe FNA-B-CA was hereby successfully prepared into fluorescent microspheres using the favorable processing properties of CA, further facilitating the simultaneous detection and adsorption of N2H4 in aqueous solutions.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Hazardous Materials
Journal of Hazardous Materials 工程技术-工程:环境
CiteScore
25.40
自引率
5.90%
发文量
3059
审稿时长
58 days
期刊介绍: The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信