Innovative Separator Engineering: Hydrogen Bond-Driven Layer-By-Layer Assembly for Enhanced Stability and Efficiency in Lithium Metal Batteries

IF 3.7 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Zhuqing Huang, Xingtao Qi, Hai Zhang, Liequan Liu, Ze Zhang, Zhenyu Yang, Junchao Wei
{"title":"Innovative Separator Engineering: Hydrogen Bond-Driven Layer-By-Layer Assembly for Enhanced Stability and Efficiency in Lithium Metal Batteries","authors":"Zhuqing Huang, Xingtao Qi, Hai Zhang, Liequan Liu, Ze Zhang, Zhenyu Yang, Junchao Wei","doi":"10.1021/acs.langmuir.5c00654","DOIUrl":null,"url":null,"abstract":"Lithium metal batteries (LMBs) face critical challenges due to uncontrolled lithium dendrite growth and inhomogeneous Li<sup>+</sup> flux, largely attributed to conventional separators’ poor interfacial compatibility. To address this, we propose a hydrogen bond-driven layer-by-layer (LbL) assembly strategy for engineering functional separators using poly(vinyl alcohol) (PVA) and tannic acid (TA). The optimized PP/(TA/PVA)<sub>15</sub> separator leverages the synergistic interplay between PVA’s hydroxyl groups and TA’s carbonyl moieties, forming a robust hydrogen-bonded network that simultaneously enhances lithiophilicity, regulates Li<sup>+</sup> flux uniformity, and immobilizes anions. The interfacial design achieves exceptional electrochemical performance: Li//Li symmetric cells maintain stable operation for 800 h at 0.5 mA cm<sup>–2</sup>/0.5 mAh cm<sup>–2</sup>, while Li//LiFePO<sub>4</sub> half cells retain 73.8% capacity after 1000 cycles at 5C (decay rate: 0.026% per cycle). The separator further exhibits high ionic conductivity (0.94 mS cm<sup>–1</sup>) and Li<sup>+</sup> transference number (0.63), outperforming conventional polyolefin counterparts. By integrating simplicity, scalability, and eco-friendliness, this work pioneers a universal interface chemistry paradigm for next-generation LMBs, offering transformative insights into separator engineering through molecular-level hydrogen-bonding control.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"46 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.5c00654","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium metal batteries (LMBs) face critical challenges due to uncontrolled lithium dendrite growth and inhomogeneous Li+ flux, largely attributed to conventional separators’ poor interfacial compatibility. To address this, we propose a hydrogen bond-driven layer-by-layer (LbL) assembly strategy for engineering functional separators using poly(vinyl alcohol) (PVA) and tannic acid (TA). The optimized PP/(TA/PVA)15 separator leverages the synergistic interplay between PVA’s hydroxyl groups and TA’s carbonyl moieties, forming a robust hydrogen-bonded network that simultaneously enhances lithiophilicity, regulates Li+ flux uniformity, and immobilizes anions. The interfacial design achieves exceptional electrochemical performance: Li//Li symmetric cells maintain stable operation for 800 h at 0.5 mA cm–2/0.5 mAh cm–2, while Li//LiFePO4 half cells retain 73.8% capacity after 1000 cycles at 5C (decay rate: 0.026% per cycle). The separator further exhibits high ionic conductivity (0.94 mS cm–1) and Li+ transference number (0.63), outperforming conventional polyolefin counterparts. By integrating simplicity, scalability, and eco-friendliness, this work pioneers a universal interface chemistry paradigm for next-generation LMBs, offering transformative insights into separator engineering through molecular-level hydrogen-bonding control.

Abstract Image

锂金属电池(LMB)面临着严峻的挑战,这主要是由于传统隔膜的界面兼容性差,导致锂枝晶生长失控和 Li+ 通量不均匀。为解决这一问题,我们提出了一种氢键驱动的逐层(LbL)组装策略,利用聚乙烯醇(PVA)和单宁酸(TA)来设计功能性隔膜。经过优化的 PP/(TA/PVA)15 分离剂利用了 PVA 的羟基和 TA 的羰基之间的协同作用,形成了一个强大的氢键网络,可同时增强亲锂性,调节 Li+ 通量的均匀性,并固定阴离子。这种界面设计实现了卓越的电化学性能:锂//锂对称电池可在 0.5 mA cm-2/0.5 mAh cm-2 下稳定运行 800 小时,而锂//LiFePO4 半电池在 5C 下循环 1000 次后仍能保持 73.8% 的容量(衰减率:0.026%/次)。该隔膜还具有较高的离子传导性(0.94 mS cm-1)和锂+转移数(0.63),优于传统的聚烯烃隔膜。这项工作集简便性、可扩展性和环保性于一体,开创了下一代 LMB 的通用界面化学范例,通过分子级氢键控制为分离器工程提供了变革性的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信