Didier A. Ndeh, Sirintra Nakjang, Kurt J. Kwiatkowski, Claire Sawyers, Nicole M. Koropatkin, Robert P. Hirt, David N. Bolam
{"title":"A Bacteroides thetaiotaomicron genetic locus encodes activities consistent with mucin O-glycoprotein processing and N-acetylgalactosamine metabolism","authors":"Didier A. Ndeh, Sirintra Nakjang, Kurt J. Kwiatkowski, Claire Sawyers, Nicole M. Koropatkin, Robert P. Hirt, David N. Bolam","doi":"10.1038/s41467-025-58660-2","DOIUrl":null,"url":null,"abstract":"<p>The gut microbiota is a key modulator of human health and the status of major diseases including cancer, diabetes and inflammatory bowel disease. Central to microbiota survival is the ability to metabolise complex dietary and host-derived glycans, including intestinal mucins. The prominent human gut microbe <i>Bacteroides thetaiotaomicron (B. theta)</i> is a versatile and highly efficient complex glycan degrader thanks to the expansion of gene clusters termed polysaccharide utilisation loci (PULs). While the mechanism of action for several singular dietary glycan-induced PULs have been elucidated, studies on the unusually high number of mucin-inducible PULs in <i>B. theta</i> significantly lag behind. Here we show that a mucin inducible PUL BT4240-50 encodes activities consistent with the processing and metabolism of mucin <i>O</i>-glycoproteins and their core sugar <i>N</i>-acetylgalactosamine (GalNAc). PUL BT4240-50 was also shown to be important for competitive growth on mucins in vitro, encoding a kinase (BT4240) critical for GalNAc metabolism. Additionally, BT4240-kinase was shown to be essential for glycosaminoglycan metabolism, extending the PULs function beyond mucins. These data advance our understanding of glycoprotein metabolism at mucosal surfaces, highlighting GalNAc as a key metabolite for competitive microbial survival in the human gut.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"20 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58660-2","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The gut microbiota is a key modulator of human health and the status of major diseases including cancer, diabetes and inflammatory bowel disease. Central to microbiota survival is the ability to metabolise complex dietary and host-derived glycans, including intestinal mucins. The prominent human gut microbe Bacteroides thetaiotaomicron (B. theta) is a versatile and highly efficient complex glycan degrader thanks to the expansion of gene clusters termed polysaccharide utilisation loci (PULs). While the mechanism of action for several singular dietary glycan-induced PULs have been elucidated, studies on the unusually high number of mucin-inducible PULs in B. theta significantly lag behind. Here we show that a mucin inducible PUL BT4240-50 encodes activities consistent with the processing and metabolism of mucin O-glycoproteins and their core sugar N-acetylgalactosamine (GalNAc). PUL BT4240-50 was also shown to be important for competitive growth on mucins in vitro, encoding a kinase (BT4240) critical for GalNAc metabolism. Additionally, BT4240-kinase was shown to be essential for glycosaminoglycan metabolism, extending the PULs function beyond mucins. These data advance our understanding of glycoprotein metabolism at mucosal surfaces, highlighting GalNAc as a key metabolite for competitive microbial survival in the human gut.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.