Metal-organic framework glass stabilizes high-voltage cathodes for efficient lithium-metal batteries

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Lishun Bai, Yan Xu, Yue Liu, Danni Zhang, Shibin Zhang, Wujie Yang, Zhi Chang, Haoshen Zhou
{"title":"Metal-organic framework glass stabilizes high-voltage cathodes for efficient lithium-metal batteries","authors":"Lishun Bai, Yan Xu, Yue Liu, Danni Zhang, Shibin Zhang, Wujie Yang, Zhi Chang, Haoshen Zhou","doi":"10.1038/s41467-025-58639-z","DOIUrl":null,"url":null,"abstract":"<p>The rapid evolution of portable electronics and electric vehicles necessitates batteries with high energy density, robust cycling stability, and fast charging capabilities. High-voltage cathodes, like LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> (NCM-811), promise enhanced energy density but are hampered by poor stability and sluggish lithium-ion diffusion in conventional electrolytes. We introduce a metal-organic framework (MOF) liquid-infusion technique to fully integrate MOF liquid into the grain boundaries of NCM-811, creating a thoroughly coated cathode with a thin, rigid MOF Glass layer. The surface electrically non-conductive MOF Glass layer with 2.9 Å pore windows facilitating Li-ion pre-desolvation and enabling highly aggregative electrolyte formation inside the Glass channels, suppressing solvated Li-ion co-insertion and solvent decomposition. While the inner Glass layer composes of Li-ion conducting components and enhancing fast Li-ion diffusion. This functional structure effectively shields the cathode from particle cracking, CEI rupture, oxygen loss, and transition metal migration. As a result, Li | |Glass@NCM-811 cells demonstrate good rate capability and cycling stability even under high-charge rates and elevated voltages. Furthermore, we also achieve a 385 Wh kg<sup>-1</sup> pouch-cell (19.579 g, for pouch-cell), showcasing the practical potential of this method. This straightforward and versatile strategy can be applied to other high-voltage cathodes like Li-rich manganese oxides and LiCoO<sub>2</sub>.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"11 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58639-z","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid evolution of portable electronics and electric vehicles necessitates batteries with high energy density, robust cycling stability, and fast charging capabilities. High-voltage cathodes, like LiNi0.8Co0.1Mn0.1O2 (NCM-811), promise enhanced energy density but are hampered by poor stability and sluggish lithium-ion diffusion in conventional electrolytes. We introduce a metal-organic framework (MOF) liquid-infusion technique to fully integrate MOF liquid into the grain boundaries of NCM-811, creating a thoroughly coated cathode with a thin, rigid MOF Glass layer. The surface electrically non-conductive MOF Glass layer with 2.9 Å pore windows facilitating Li-ion pre-desolvation and enabling highly aggregative electrolyte formation inside the Glass channels, suppressing solvated Li-ion co-insertion and solvent decomposition. While the inner Glass layer composes of Li-ion conducting components and enhancing fast Li-ion diffusion. This functional structure effectively shields the cathode from particle cracking, CEI rupture, oxygen loss, and transition metal migration. As a result, Li | |Glass@NCM-811 cells demonstrate good rate capability and cycling stability even under high-charge rates and elevated voltages. Furthermore, we also achieve a 385 Wh kg-1 pouch-cell (19.579 g, for pouch-cell), showcasing the practical potential of this method. This straightforward and versatile strategy can be applied to other high-voltage cathodes like Li-rich manganese oxides and LiCoO2.

Abstract Image

金属有机框架玻璃稳定高效锂金属电池的高压阴极
便携式电子产品和电动汽车的快速发展要求电池具有高能量密度、强大的循环稳定性和快速充电能力。高压阴极,如LiNi0.8Co0.1Mn0.1O2 (NCM-811),有望提高能量密度,但受到传统电解质稳定性差和锂离子扩散缓慢的阻碍。我们引入了一种金属有机框架(MOF)液体注入技术,将MOF液体完全整合到NCM-811的晶界中,创造了一个具有薄而刚性的MOF玻璃层的完全涂覆阴极。表面不导电的MOF玻璃层具有2.9 Å孔窗,有利于锂离子的预溶解,并使玻璃通道内形成高度聚集的电解质,抑制溶剂化的锂离子共插入和溶剂分解。而内玻璃层则由锂离子导电成分组成,增强了锂离子的快速扩散。这种功能结构有效地保护阴极免受颗粒破裂、CEI破裂、氧损失和过渡金属迁移的影响。因此,Li | |Glass@NCM-811电池即使在高充电率和高电压下也表现出良好的倍率能力和循环稳定性。此外,我们还实现了385 Wh kg-1袋电池(19.579 g,袋电池),展示了该方法的实用潜力。这种简单而通用的策略可以应用于其他高压阴极,如富锂锰氧化物和LiCoO2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信