Daocheng Yu, Xiaoli Deng, Ole Baltazar Andersen, Huizhong Zhu, Jia Luo
{"title":"A new method for determining geoid gradient components from SWOT wide-swath data for marine gravity field","authors":"Daocheng Yu, Xiaoli Deng, Ole Baltazar Andersen, Huizhong Zhu, Jia Luo","doi":"10.1007/s00190-025-01950-w","DOIUrl":null,"url":null,"abstract":"<p>The Surface Water and Ocean Topography (SWOT) altimeter mission provides a significant opportunity to improve the accuracy of geoid gradients (GGs) and marine gravity fields. This paper presents a new method, namely LSA3, to determine the north and east (<span>\\(\\xi \\)</span> and <span>\\(\\eta \\)</span>) components of GGs from simulated and real SWOT data in the northern South China Sea. To fully use SWOT’s fine-scale sea surface height (SSH) measurements, LSA3 first determines GGs in SWOT along-, cross- and oblique-track directions and constructs a grid for each gradient. Least-squares adjustment (LSA), accounting for correlations of the GGs in three directions, is then employed to point-wisely estimate <span>\\(\\xi \\)</span> and <span>\\(\\eta \\)</span> components at grid points. The accuracy of estimated <span>\\(\\xi \\)</span> and <span>\\(\\eta \\)</span> components is assessed using those computed by numerical differentiations. For comparison, GG components are also estimated using least-squares collocation (LSC) and weighted LSA (WLSA) methods with empirically determined data window sizes and without accounting for correlations. Simulated results show that LSA3-estimated GG components achieve the root-mean-square deviation (RMSD) values of 0.43 and 0.47 microrad for <span>\\(\\xi \\)</span> and <span>\\(\\eta \\)</span>, respectively, outperforming LSC (0.82 and 0.86 microrad) and WLSA (0.49 and 0.54 microrad). The results from the real SWOT data indicate that LSA3 is comparable to LSC with a mean RMSD of 1.88 mgal for marine gravity anomalies when compared to shipborne gravity data, but LSA3 is more computationally efficient than LSC. Compared to the Sandwell V32.1 gravity field, SWOT improves gravity accuracy by an average of 12.0%, with a maximum improvement of 44.3% for a single ship trajectory.</p>","PeriodicalId":54822,"journal":{"name":"Journal of Geodesy","volume":"43 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geodesy","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00190-025-01950-w","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The Surface Water and Ocean Topography (SWOT) altimeter mission provides a significant opportunity to improve the accuracy of geoid gradients (GGs) and marine gravity fields. This paper presents a new method, namely LSA3, to determine the north and east (\(\xi \) and \(\eta \)) components of GGs from simulated and real SWOT data in the northern South China Sea. To fully use SWOT’s fine-scale sea surface height (SSH) measurements, LSA3 first determines GGs in SWOT along-, cross- and oblique-track directions and constructs a grid for each gradient. Least-squares adjustment (LSA), accounting for correlations of the GGs in three directions, is then employed to point-wisely estimate \(\xi \) and \(\eta \) components at grid points. The accuracy of estimated \(\xi \) and \(\eta \) components is assessed using those computed by numerical differentiations. For comparison, GG components are also estimated using least-squares collocation (LSC) and weighted LSA (WLSA) methods with empirically determined data window sizes and without accounting for correlations. Simulated results show that LSA3-estimated GG components achieve the root-mean-square deviation (RMSD) values of 0.43 and 0.47 microrad for \(\xi \) and \(\eta \), respectively, outperforming LSC (0.82 and 0.86 microrad) and WLSA (0.49 and 0.54 microrad). The results from the real SWOT data indicate that LSA3 is comparable to LSC with a mean RMSD of 1.88 mgal for marine gravity anomalies when compared to shipborne gravity data, but LSA3 is more computationally efficient than LSC. Compared to the Sandwell V32.1 gravity field, SWOT improves gravity accuracy by an average of 12.0%, with a maximum improvement of 44.3% for a single ship trajectory.
期刊介绍:
The Journal of Geodesy is an international journal concerned with the study of scientific problems of geodesy and related interdisciplinary sciences. Peer-reviewed papers are published on theoretical or modeling studies, and on results of experiments and interpretations. Besides original research papers, the journal includes commissioned review papers on topical subjects and special issues arising from chosen scientific symposia or workshops. The journal covers the whole range of geodetic science and reports on theoretical and applied studies in research areas such as:
-Positioning
-Reference frame
-Geodetic networks
-Modeling and quality control
-Space geodesy
-Remote sensing
-Gravity fields
-Geodynamics