Duhee Kim, Murali Bissannagari, Boil Kim, Nari Hong, Jaeu Park, Hyeongtae Lim, Junhee Lee, Jungha Lee, Yoon Kyoung Kim, Youngjae Cho, Kwang Lee, Junghyup Lee, Jong-Hyeok Yoon, Jae Eun Jang, David Tsai, Sanghoon Lee, Hyuk-Jun Kwon, Han Kyoung Choe, Hongki Kang
{"title":"Hexagonal metal complex based mechanically robust transparent ultrathin gold µECoG for electro-optical neural interfaces","authors":"Duhee Kim, Murali Bissannagari, Boil Kim, Nari Hong, Jaeu Park, Hyeongtae Lim, Junhee Lee, Jungha Lee, Yoon Kyoung Kim, Youngjae Cho, Kwang Lee, Junghyup Lee, Jong-Hyeok Yoon, Jae Eun Jang, David Tsai, Sanghoon Lee, Hyuk-Jun Kwon, Han Kyoung Choe, Hongki Kang","doi":"10.1038/s41528-025-00403-w","DOIUrl":null,"url":null,"abstract":"<p>Transparent electro-optical neural interfacing technologies offer simultaneous high-spatial-resolution microscopic imaging, and high-temporal-resolution electrical recording and stimulation. However, fabricating transparent, flexible, and mechanically robust neural electrodes with high electrochemical performance remains challenging. In this study, we fabricated transparent (72.7% at 570 nm), mechanically robust (0.05% resistance change after 50k bending cycles) ultrathin Au microelectrodes for micro-electrocorticography (µECoG) using a hexadentate metal-polymer ligand bonding with an EDTA/PSS seed layer. These transparent µECoG arrays, fabricated with biocompatible gold, exhibit excellent electrochemical properties (0.73 Ω·cm<sup>2</sup>) for neural recording and stimulation with long-term stability. We recorded brain surface waves in vivo, maintaining a low baseline noise and a high signal-to-noise ratio during acute and two-week recordings. In addition, we successfully performed optogenetic modulation without light-induced artifacts at 7.32 mW/mm<sup>2</sup> laser power density. This approach shows great potential for scalable, implantable neural electrodes and wearable optoelectronic devices in digital healthcare systems.</p>","PeriodicalId":48528,"journal":{"name":"npj Flexible Electronics","volume":"183 1","pages":""},"PeriodicalIF":12.3000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Flexible Electronics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41528-025-00403-w","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Transparent electro-optical neural interfacing technologies offer simultaneous high-spatial-resolution microscopic imaging, and high-temporal-resolution electrical recording and stimulation. However, fabricating transparent, flexible, and mechanically robust neural electrodes with high electrochemical performance remains challenging. In this study, we fabricated transparent (72.7% at 570 nm), mechanically robust (0.05% resistance change after 50k bending cycles) ultrathin Au microelectrodes for micro-electrocorticography (µECoG) using a hexadentate metal-polymer ligand bonding with an EDTA/PSS seed layer. These transparent µECoG arrays, fabricated with biocompatible gold, exhibit excellent electrochemical properties (0.73 Ω·cm2) for neural recording and stimulation with long-term stability. We recorded brain surface waves in vivo, maintaining a low baseline noise and a high signal-to-noise ratio during acute and two-week recordings. In addition, we successfully performed optogenetic modulation without light-induced artifacts at 7.32 mW/mm2 laser power density. This approach shows great potential for scalable, implantable neural electrodes and wearable optoelectronic devices in digital healthcare systems.
期刊介绍:
npj Flexible Electronics is an online-only and open access journal, which publishes high-quality papers related to flexible electronic systems, including plastic electronics and emerging materials, new device design and fabrication technologies, and applications.