Tailoring the release of highly loaded amorphous solid dispersions via additive manufacturing

IF 10.5 1区 医学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Carolina Alva , Elisa Goetzinger , Josip Matić , Aygün Doğan , Eyke Slama , Sarah Heupl , Thomas Rillmann , Susanna Abrahmsén-Alami , Jonathan Booth , Sharareh Salar-Behzadi , Martin Spoerk
{"title":"Tailoring the release of highly loaded amorphous solid dispersions via additive manufacturing","authors":"Carolina Alva ,&nbsp;Elisa Goetzinger ,&nbsp;Josip Matić ,&nbsp;Aygün Doğan ,&nbsp;Eyke Slama ,&nbsp;Sarah Heupl ,&nbsp;Thomas Rillmann ,&nbsp;Susanna Abrahmsén-Alami ,&nbsp;Jonathan Booth ,&nbsp;Sharareh Salar-Behzadi ,&nbsp;Martin Spoerk","doi":"10.1016/j.jconrel.2025.113723","DOIUrl":null,"url":null,"abstract":"<div><div>In the last decades, tremendous improvements have been made in enhancing the bioavailability of poorly soluble active pharmaceutical ingredients (APIs). Lately, their customisation potential has become a reality through filament-based 3D-printing (3DP). Highly loaded oral amorphous solid dispersions (ASDs) are of particular interest, since they drastically reduce the pill burden. However, such systems are limited by their high tendency of API recrystallisation, compromising the API solubility and the mechanical properties of filaments fabricated for 3DP. The following work closes this gap by developing compact 3DP tablets containing an ASD system of 70 % itraconazole in hydroxypropyl methylcellulose acetate succinate (HPMCAS). The processability via HME and 3DP processes was thoroughly investigated by considering filament properties such as solid-state, rheology and mechanical behaviour. Even after six months of storage, the ASD did not show recrystallisation and maintained a zero-order drug release for variable 3DP infill patterns, demonstrating the potential of this approach for on-demand processing at the point-of-care. A strong differentiation in release kinetics was found for different infills that can be used for further improvement of the product to allow tailored release rates. This work provides a strong basis for successful personalisation of highly loaded ASDs via 3DP.</div></div>","PeriodicalId":15450,"journal":{"name":"Journal of Controlled Release","volume":"382 ","pages":"Article 113723"},"PeriodicalIF":10.5000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Controlled Release","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168365925003438","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In the last decades, tremendous improvements have been made in enhancing the bioavailability of poorly soluble active pharmaceutical ingredients (APIs). Lately, their customisation potential has become a reality through filament-based 3D-printing (3DP). Highly loaded oral amorphous solid dispersions (ASDs) are of particular interest, since they drastically reduce the pill burden. However, such systems are limited by their high tendency of API recrystallisation, compromising the API solubility and the mechanical properties of filaments fabricated for 3DP. The following work closes this gap by developing compact 3DP tablets containing an ASD system of 70 % itraconazole in hydroxypropyl methylcellulose acetate succinate (HPMCAS). The processability via HME and 3DP processes was thoroughly investigated by considering filament properties such as solid-state, rheology and mechanical behaviour. Even after six months of storage, the ASD did not show recrystallisation and maintained a zero-order drug release for variable 3DP infill patterns, demonstrating the potential of this approach for on-demand processing at the point-of-care. A strong differentiation in release kinetics was found for different infills that can be used for further improvement of the product to allow tailored release rates. This work provides a strong basis for successful personalisation of highly loaded ASDs via 3DP.

Abstract Image

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Controlled Release
Journal of Controlled Release 医学-化学综合
CiteScore
18.50
自引率
5.60%
发文量
700
审稿时长
39 days
期刊介绍: The Journal of Controlled Release (JCR) proudly serves as the Official Journal of the Controlled Release Society and the Japan Society of Drug Delivery System. Dedicated to the broad field of delivery science and technology, JCR publishes high-quality research articles covering drug delivery systems and all facets of formulations. This includes the physicochemical and biological properties of drugs, design and characterization of dosage forms, release mechanisms, in vivo testing, and formulation research and development across pharmaceutical, diagnostic, agricultural, environmental, cosmetic, and food industries. Priority is given to manuscripts that contribute to the fundamental understanding of principles or demonstrate the advantages of novel technologies in terms of safety and efficacy over current clinical standards. JCR strives to be a leading platform for advancements in delivery science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信