{"title":"hPSC-based treatment of retinal diseases – Current progress and challenges","authors":"Atsuta Ozaki , Daiki Sakai , Michiko Mandai","doi":"10.1016/j.addr.2025.115587","DOIUrl":null,"url":null,"abstract":"<div><div>Degenerative retinal diseases, such as age-related macular degeneration (AMD) and inherited retinal diseases (IRDs), cause visual impairment due to irreversible damage to the retinal pigment epithelium (RPE) and photoreceptor cells (PRCs). Currently, no definitive treatment exists. However, cell-based therapies using induced pluripotent stem cells (iPSCs) or embryonic stem cells (ESCs) offer potential solutions for restoring damaged retinal cells. This review summarizes recent advances in RPE and PRC transplantation, highlighting the benefits of each approach. For RPE transplantation, we focus on the outcomes of clinical studies involving three formulations: RPE sheets, RPE suspensions, and RPE strips. In the context of PRC transplantation, we trace the progress from fetal retinal transplantation to the latest studies. Additionally, we discuss our recent clinical work with retinal sheet transplantation and genome-edited retinal organoid sheets, which aim to improve functional integration by reducing bipolar cells in grafts. Finally, with the overall safety of the regenerative cell-based therapies demonstrated in past clinical applications, we explore future prospects for these therapies.</div></div>","PeriodicalId":7254,"journal":{"name":"Advanced drug delivery reviews","volume":"221 ","pages":"Article 115587"},"PeriodicalIF":15.2000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced drug delivery reviews","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169409X25000729","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Degenerative retinal diseases, such as age-related macular degeneration (AMD) and inherited retinal diseases (IRDs), cause visual impairment due to irreversible damage to the retinal pigment epithelium (RPE) and photoreceptor cells (PRCs). Currently, no definitive treatment exists. However, cell-based therapies using induced pluripotent stem cells (iPSCs) or embryonic stem cells (ESCs) offer potential solutions for restoring damaged retinal cells. This review summarizes recent advances in RPE and PRC transplantation, highlighting the benefits of each approach. For RPE transplantation, we focus on the outcomes of clinical studies involving three formulations: RPE sheets, RPE suspensions, and RPE strips. In the context of PRC transplantation, we trace the progress from fetal retinal transplantation to the latest studies. Additionally, we discuss our recent clinical work with retinal sheet transplantation and genome-edited retinal organoid sheets, which aim to improve functional integration by reducing bipolar cells in grafts. Finally, with the overall safety of the regenerative cell-based therapies demonstrated in past clinical applications, we explore future prospects for these therapies.
期刊介绍:
The aim of the Journal is to provide a forum for the critical analysis of advanced drug and gene delivery systems and their applications in human and veterinary medicine. The Journal has a broad scope, covering the key issues for effective drug and gene delivery, from administration to site-specific delivery.
In general, the Journal publishes review articles in a Theme Issue format. Each Theme Issue provides a comprehensive and critical examination of current and emerging research on the design and development of advanced drug and gene delivery systems and their application to experimental and clinical therapeutics. The goal is to illustrate the pivotal role of a multidisciplinary approach to modern drug delivery, encompassing the application of sound biological and physicochemical principles to the engineering of drug delivery systems to meet the therapeutic need at hand. Importantly the Editorial Team of ADDR asks that the authors effectively window the extensive volume of literature, pick the important contributions and explain their importance, produce a forward looking identification of the challenges facing the field and produce a Conclusions section with expert recommendations to address the issues.