Reconstruction of the ancient cyanobacterial proto-circadian clock system KaiABC.

Silin Li,Zengxuan Zhou,Yufeng Wan,Xudong Jia,Peiliang Wang,Yu Wang,Taisen Zuo,He Cheng,Xiaoting Fang,Shuqi Dong,Jun He,Yilin Yang,Yichen Xu,Shaoxuan Fu,Xujing Wang,Ximing Qin,Qiguang Xie,Xiaodong Xu,Yuwei Zhao,Dan Liang,Peng Zhang,Qinfen Zhang,Jinhu Guo
{"title":"Reconstruction of the ancient cyanobacterial proto-circadian clock system KaiABC.","authors":"Silin Li,Zengxuan Zhou,Yufeng Wan,Xudong Jia,Peiliang Wang,Yu Wang,Taisen Zuo,He Cheng,Xiaoting Fang,Shuqi Dong,Jun He,Yilin Yang,Yichen Xu,Shaoxuan Fu,Xujing Wang,Ximing Qin,Qiguang Xie,Xiaodong Xu,Yuwei Zhao,Dan Liang,Peng Zhang,Qinfen Zhang,Jinhu Guo","doi":"10.1038/s44318-025-00425-0","DOIUrl":null,"url":null,"abstract":"Earlier in its history, the Earth used to spin faster than it does today. How ancient organisms adapted to the short day/night cycles during that time remains unclear. In this study we reconstruct and analyse the ancient circadian clock system KaiABC (anKaiABC) of cyanobacteria that existed ~0.95 billion years ago, when the daily light/dark cycle was ~18 h-long. Compared to their contemporary counterparts, anKaiABC proteins had different structures and interactions. The kinase, phosphatase, and adenosine triphosphatase (ATPase) activities of anKaiC were lower, while the anKaiA and anKaiB proteins were less effective at regulating the KaiC/anKaiC phosphorylation status. We provide evidence indicating that the anKaiABC system does not endogenously oscillate, but it can be entrained by an 18 h-long light/dark cycle. A Synechococcus strain expressing ankaiABC genes exhibits better adaptation to 9-h light/9-h dark cycles (LD9:9) that mimic the ancient 18-h day/night cycles, whereas the kaiABC-expressing strain preferentially adapts to the LD12:12 contemporary conditions. These findings suggest that, despite its lack of self-sustaining circadian oscillation, the proto-circadian system may have mediated adaptation of ancient cyanobacteria to the 18 h-long light/dark cycles present 0.95 billion years ago.","PeriodicalId":501009,"journal":{"name":"The EMBO Journal","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The EMBO Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44318-025-00425-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Earlier in its history, the Earth used to spin faster than it does today. How ancient organisms adapted to the short day/night cycles during that time remains unclear. In this study we reconstruct and analyse the ancient circadian clock system KaiABC (anKaiABC) of cyanobacteria that existed ~0.95 billion years ago, when the daily light/dark cycle was ~18 h-long. Compared to their contemporary counterparts, anKaiABC proteins had different structures and interactions. The kinase, phosphatase, and adenosine triphosphatase (ATPase) activities of anKaiC were lower, while the anKaiA and anKaiB proteins were less effective at regulating the KaiC/anKaiC phosphorylation status. We provide evidence indicating that the anKaiABC system does not endogenously oscillate, but it can be entrained by an 18 h-long light/dark cycle. A Synechococcus strain expressing ankaiABC genes exhibits better adaptation to 9-h light/9-h dark cycles (LD9:9) that mimic the ancient 18-h day/night cycles, whereas the kaiABC-expressing strain preferentially adapts to the LD12:12 contemporary conditions. These findings suggest that, despite its lack of self-sustaining circadian oscillation, the proto-circadian system may have mediated adaptation of ancient cyanobacteria to the 18 h-long light/dark cycles present 0.95 billion years ago.
古蓝藻原生物钟系统的重构。
在早期的历史中,地球的自转速度比现在要快。古代生物是如何适应那段时间短暂的昼夜循环的,目前还不清楚。在这项研究中,我们重建和分析了存在于约9.5亿年前的蓝藻的古老生物钟系统KaiABC (anKaiABC),当时的日光/暗周期为~18 h。与当代同类蛋白相比,anKaiABC蛋白具有不同的结构和相互作用。anKaiC的激酶、磷酸酶和腺苷三磷酸酶(ATPase)活性较低,而anKaiA和anKaiB蛋白对KaiC/anKaiC磷酸化状态的调节作用较弱。我们提供的证据表明,anKaiABC系统不会内源性振荡,但它可以被18 h长的光/暗周期夹带。表达ankaiABC基因的聚球菌菌株对模拟古代18小时昼夜循环的9小时光/9小时暗循环(LD9:9)表现出更好的适应性,而表达kaiabc的菌株则优先适应LD12:12的当代条件。这些发现表明,尽管缺乏自我维持的昼夜节律振荡,原始昼夜节律系统可能介导了古蓝藻对9.5亿年前18 h长的光/暗周期的适应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信