{"title":"Bcl11a maintains hematopoietic stem cell function but accelerates inflammation-driven exhaustion during aging","authors":"Jing Wang, Linlin Zhang, Xinyu Cui, Xiang Xu, Rui Guo, Kairui Li, Li Zhang, Bing Xu, Cizhong Jiang, Yong Yu","doi":"10.1126/sciimmunol.adr2041","DOIUrl":null,"url":null,"abstract":"<div >Preserving hematopoietic stem cell (HSC) functionality is essential for maintaining healthy blood and the immune system throughout life. HSC function declines with age; however, the underlying mechanisms are not fully understood. Using an inducible mosaic mouse model to overexpress the transcription factor Bcl11a in the hematopoietic compartment, we found that an aging-related increase in Bcl11a mitigated HSC functional decline, promoted IL-1β production in the bone marrow (BM), and accelerated HSC attrition in a non–cell-autonomous manner. Aging-related inflammation in the BM enhanced Bcl11a and Fc receptor (FcR) expression in HSCs, and FcR signaling induced HSC differentiation. This was counteracted by Bcl11a through repression of <i>Fcer1g</i>. Bcl11a up-regulation promoted IL-1β production in BM myeloid cells, driving inflammation and HSC deterioration. Deletion of <i>Fcer1g</i>, or blocking IL-1β signaling, eliminated this non–cell-autonomous effect on HSC decline. These findings demonstrate that Bcl11a plays a dual role in HSCs during aging not only by cell-intrinsically preserving HSC function but also by promoting BM inflammation and HSC dysfunction.</div>","PeriodicalId":21734,"journal":{"name":"Science Immunology","volume":"10 106","pages":""},"PeriodicalIF":17.6000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Immunology","FirstCategoryId":"3","ListUrlMain":"https://www.science.org/doi/10.1126/sciimmunol.adr2041","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Preserving hematopoietic stem cell (HSC) functionality is essential for maintaining healthy blood and the immune system throughout life. HSC function declines with age; however, the underlying mechanisms are not fully understood. Using an inducible mosaic mouse model to overexpress the transcription factor Bcl11a in the hematopoietic compartment, we found that an aging-related increase in Bcl11a mitigated HSC functional decline, promoted IL-1β production in the bone marrow (BM), and accelerated HSC attrition in a non–cell-autonomous manner. Aging-related inflammation in the BM enhanced Bcl11a and Fc receptor (FcR) expression in HSCs, and FcR signaling induced HSC differentiation. This was counteracted by Bcl11a through repression of Fcer1g. Bcl11a up-regulation promoted IL-1β production in BM myeloid cells, driving inflammation and HSC deterioration. Deletion of Fcer1g, or blocking IL-1β signaling, eliminated this non–cell-autonomous effect on HSC decline. These findings demonstrate that Bcl11a plays a dual role in HSCs during aging not only by cell-intrinsically preserving HSC function but also by promoting BM inflammation and HSC dysfunction.
期刊介绍:
Science Immunology is a peer-reviewed journal that publishes original research articles in the field of immunology. The journal encourages the submission of research findings from all areas of immunology, including studies on innate and adaptive immunity, immune cell development and differentiation, immunogenomics, systems immunology, structural immunology, antigen presentation, immunometabolism, and mucosal immunology. Additionally, the journal covers research on immune contributions to health and disease, such as host defense, inflammation, cancer immunology, autoimmunity, allergy, transplantation, and immunodeficiency. Science Immunology maintains the same high-quality standard as other journals in the Science family and aims to facilitate understanding of the immune system by showcasing innovative advances in immunology research from all organisms and model systems, including humans.