Sophia N. Fricke, Mia Salgado, Shira Haber, Jeremy Demarteau, Mutian Hua, Ah-Young Song, Brett A. Helms, Jeffrey A. Reimer
{"title":"Diffusion power spectra as a window into dynamic materials architecture","authors":"Sophia N. Fricke, Mia Salgado, Shira Haber, Jeremy Demarteau, Mutian Hua, Ah-Young Song, Brett A. Helms, Jeffrey A. Reimer","doi":"10.1126/sciadv.adt6144","DOIUrl":null,"url":null,"abstract":"<div >Chemical recycling of commodity and specialty polymers presents a multifaceted challenge for industrial societies. On one hand, macromolecular architectures must be engineered to yield durable products that, on the other hand, rapidly deconstruct to recyclable monomers under pre-determined conditions. Polymer deconstruction is a chemical process that requires deep understanding of molecular reactivity in heterogeneous media, where porous material architectures evolve in both space and time. To build this understanding, we develop herein experimental and analytical methods describing sets of diffusive eigenmodes that exist within time-varying, non-Euclidean boundary conditions, a situation commonly encountered in the reactive deconstruction of polymers where chain fragments splay, alter their local dynamics, and evolve in their confinement of reacting media. Diffusion power spectra, discerned experimentally by NMR, yield polymer and solvent frequency-domain velocity autocorrelation functions that are analyzed in the context of physical models for chemical reactions parameterized with fractal mathematics. The results connect local motion in polymers to chemical reactivity during acidolysis of circular elastomers.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 15","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adt6144","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adt6144","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Chemical recycling of commodity and specialty polymers presents a multifaceted challenge for industrial societies. On one hand, macromolecular architectures must be engineered to yield durable products that, on the other hand, rapidly deconstruct to recyclable monomers under pre-determined conditions. Polymer deconstruction is a chemical process that requires deep understanding of molecular reactivity in heterogeneous media, where porous material architectures evolve in both space and time. To build this understanding, we develop herein experimental and analytical methods describing sets of diffusive eigenmodes that exist within time-varying, non-Euclidean boundary conditions, a situation commonly encountered in the reactive deconstruction of polymers where chain fragments splay, alter their local dynamics, and evolve in their confinement of reacting media. Diffusion power spectra, discerned experimentally by NMR, yield polymer and solvent frequency-domain velocity autocorrelation functions that are analyzed in the context of physical models for chemical reactions parameterized with fractal mathematics. The results connect local motion in polymers to chemical reactivity during acidolysis of circular elastomers.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.