{"title":"The Role of Bacterial Proteases From the Microbiome in Human Disease","authors":"Ying-Chiang J. Lee","doi":"10.1155/cmi/8860329","DOIUrl":null,"url":null,"abstract":"<p>Proteases degrade proteins and peptides, recycling materials and preventing unnecessary buildup within the cell. They can also be secreted and act in extracellular space. Bacterial proteases are often secreted and function as virulence factors. In the context of the microbiome, they can contribute to host–microbe interactions to facilitate colonization and disease pathogenesis. Thus, proteolytic activity is often found to be upregulated in patient cohorts. In this minireview, we describe how bacterial proteases in the microbiome can display various bioactivities such as disruption of barrier function, degradation of host defense compounds, modulating inflammatory responses, and allowing for microbial movement. We focus on the gut, skin, vaginal, and urinary microbiomes and describe how specific bacterial organisms have proteolytic activities that can exacerbate or lead to human diseases.</p>","PeriodicalId":9844,"journal":{"name":"Cellular Microbiology","volume":"2025 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/cmi/8860329","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Microbiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/cmi/8860329","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Proteases degrade proteins and peptides, recycling materials and preventing unnecessary buildup within the cell. They can also be secreted and act in extracellular space. Bacterial proteases are often secreted and function as virulence factors. In the context of the microbiome, they can contribute to host–microbe interactions to facilitate colonization and disease pathogenesis. Thus, proteolytic activity is often found to be upregulated in patient cohorts. In this minireview, we describe how bacterial proteases in the microbiome can display various bioactivities such as disruption of barrier function, degradation of host defense compounds, modulating inflammatory responses, and allowing for microbial movement. We focus on the gut, skin, vaginal, and urinary microbiomes and describe how specific bacterial organisms have proteolytic activities that can exacerbate or lead to human diseases.
期刊介绍:
Cellular Microbiology aims to publish outstanding contributions to the understanding of interactions between microbes, prokaryotes and eukaryotes, and their host in the context of pathogenic or mutualistic relationships, including co-infections and microbiota. We welcome studies on single cells, animals and plants, and encourage the use of model hosts and organoid cultures. Submission on cell and molecular biological aspects of microbes, such as their intracellular organization or the establishment and maintenance of their architecture in relation to virulence and pathogenicity are also encouraged. Contributions must provide mechanistic insights supported by quantitative data obtained through imaging, cellular, biochemical, structural or genetic approaches.