{"title":"Role of Rivers as Geographical Barriers in Shaping Molecular Divergence of Neotropical Primates","authors":"William D. Helenbrook, Jose Valdez","doi":"10.1111/btp.70028","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>We quantitatively tested the riverine barrier hypothesis and its influence on biogeographical distributions and molecular variation in New World monkeys (Parvorder: Platyrrhini). Using mitochondrial markers (cytochrome oxidase subunit II and cytochrome b), we analyzed taxonomic differences and the effects of geographical barriers on molecular patterns across Central and South America. Nearly 80% of described species are separated by geographical barriers, including several mountain chains. River width exhibited a negative correlation with molecular similarity in adjacent taxa for both molecular markers. Several presently described taxa were not supported based solely on these molecular phylogenetic markers, including <i>Saimiri</i>, <i>Mico</i>, <i>Cebus</i>, <i>Sapajus</i>, and <i>Cherecebus</i>. These taxonomic issues are far more common where river barriers do not exist. In conclusion, we found a significant correlation between river width and molecular divergence in adjacent taxa, indicating that wider rivers were associated with greater molecular divergence for two commonly used mitochondrial genes. Species boundaries were predominantly found at river interfaces, and in the absence of discernable geological barriers, adjoining species were more likely to exhibit molecular similarity. Our findings suggest that river and mountain barriers are significantly associated with gene flow for neotropical primate taxa. Additionally, river width proves to be a valuable tool for estimating molecular divergence in adjacent taxa, particularly in regions with limited sampling.</p>\n </div>","PeriodicalId":8982,"journal":{"name":"Biotropica","volume":"57 3","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotropica","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/btp.70028","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
We quantitatively tested the riverine barrier hypothesis and its influence on biogeographical distributions and molecular variation in New World monkeys (Parvorder: Platyrrhini). Using mitochondrial markers (cytochrome oxidase subunit II and cytochrome b), we analyzed taxonomic differences and the effects of geographical barriers on molecular patterns across Central and South America. Nearly 80% of described species are separated by geographical barriers, including several mountain chains. River width exhibited a negative correlation with molecular similarity in adjacent taxa for both molecular markers. Several presently described taxa were not supported based solely on these molecular phylogenetic markers, including Saimiri, Mico, Cebus, Sapajus, and Cherecebus. These taxonomic issues are far more common where river barriers do not exist. In conclusion, we found a significant correlation between river width and molecular divergence in adjacent taxa, indicating that wider rivers were associated with greater molecular divergence for two commonly used mitochondrial genes. Species boundaries were predominantly found at river interfaces, and in the absence of discernable geological barriers, adjoining species were more likely to exhibit molecular similarity. Our findings suggest that river and mountain barriers are significantly associated with gene flow for neotropical primate taxa. Additionally, river width proves to be a valuable tool for estimating molecular divergence in adjacent taxa, particularly in regions with limited sampling.
期刊介绍:
Ranked by the ISI index, Biotropica is a highly regarded source of original research on the ecology, conservation and management of all tropical ecosystems, and on the evolution, behavior, and population biology of tropical organisms. Published on behalf of the Association of Tropical Biology and Conservation, the journal''s Special Issues and Special Sections quickly become indispensable references for researchers in the field. Biotropica publishes timely Papers, Reviews, Commentaries, and Insights. Commentaries generate thought-provoking ideas that frequently initiate fruitful debate and discussion, while Reviews provide authoritative and analytical overviews of topics of current conservation or ecological importance. The newly instituted category Insights replaces Short Communications.