Hao Wang, Chenbin Wang, Xin Cheng, Hao Wu, Jiawei Zhang, Jinwei Wang, Xiangyang Luo, Bin Ma
{"title":"LDSGAN: Unsupervised Image-to-Image Translation With Long-Domain Search GAN for Generating High-Quality Anime Images","authors":"Hao Wang, Chenbin Wang, Xin Cheng, Hao Wu, Jiawei Zhang, Jinwei Wang, Xiangyang Luo, Bin Ma","doi":"10.1155/int/4450460","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Image-to-image (<b>I2I</b>) translation has emerged as a valuable tool for privacy protection in the digital age, offering effective ways to safeguard portrait rights in cyberspace. In addition, I2I translation is applied in real-world tasks such as image synthesis, super-resolution, virtual fitting, and virtual live streaming. Traditional I2I translation models demonstrate strong performance when handling similar datasets. However, when the domain distance between two datasets is large, translation quality may degrade significantly due to notable differences in image shape and edges. To address this issue, we propose Long-Domain Search GAN (<b>LDSGAN</b>), an unsupervised I2I translation network that employs a GAN structure as its backbone, incorporating a novel Real-Time Routing Search (<b>RTRS</b>) module and Sketch Loss. Specifically, RTRS aids in expanding the search space within the target domain, aligning feature projection with images closest to the optimization target. Additionally, Sketch Loss retains human visual similarity during long-domain distance translation. Experimental results indicate that LDSGAN surpasses existing I2I translation models in both image quality and semantic similarity between input and generated images, as reflected by its mean FID and LPIPS scores of 31.509 and 0.581, respectively.</p>\n </div>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":"2025 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/int/4450460","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/int/4450460","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Image-to-image (I2I) translation has emerged as a valuable tool for privacy protection in the digital age, offering effective ways to safeguard portrait rights in cyberspace. In addition, I2I translation is applied in real-world tasks such as image synthesis, super-resolution, virtual fitting, and virtual live streaming. Traditional I2I translation models demonstrate strong performance when handling similar datasets. However, when the domain distance between two datasets is large, translation quality may degrade significantly due to notable differences in image shape and edges. To address this issue, we propose Long-Domain Search GAN (LDSGAN), an unsupervised I2I translation network that employs a GAN structure as its backbone, incorporating a novel Real-Time Routing Search (RTRS) module and Sketch Loss. Specifically, RTRS aids in expanding the search space within the target domain, aligning feature projection with images closest to the optimization target. Additionally, Sketch Loss retains human visual similarity during long-domain distance translation. Experimental results indicate that LDSGAN surpasses existing I2I translation models in both image quality and semantic similarity between input and generated images, as reflected by its mean FID and LPIPS scores of 31.509 and 0.581, respectively.
期刊介绍:
The International Journal of Intelligent Systems serves as a forum for individuals interested in tapping into the vast theories based on intelligent systems construction. With its peer-reviewed format, the journal explores several fascinating editorials written by today''s experts in the field. Because new developments are being introduced each day, there''s much to be learned — examination, analysis creation, information retrieval, man–computer interactions, and more. The International Journal of Intelligent Systems uses charts and illustrations to demonstrate these ground-breaking issues, and encourages readers to share their thoughts and experiences.