Arzu Erol, Baki Hazer, Emrah Keskin, Çağdaş Özdemir, Bengisu Yöney, Emine Derin
{"title":"Modified radiopaque polyetheretherketone implants: in vitro and in vivo study","authors":"Arzu Erol, Baki Hazer, Emrah Keskin, Çağdaş Özdemir, Bengisu Yöney, Emine Derin","doi":"10.1007/s13726-024-01407-5","DOIUrl":null,"url":null,"abstract":"<div><p>The study aims to enhance the radiopacity of polyetheretherketone (PEEK) in medical imaging by chemically modifying it with 4-iodobenzoic acid derivatives to broaden its biomedical applications. In this regard, a radiopaque derivative of PEEK was prepared with chain modification, which makes it possible to preserve the biocompatibility properties of PEEK and also increase the polymer hydrophilicity and the number of reactive functional groups that can act as potential anchors. Synthesized radioactive polymer characterization was performed by FTIR, SEM, EDX, and X-ray analyzing techniques. The characterized radiopaque PEEK polymer was implanted under the skin and muscle of the rat. The biological response status was evaluated by observing the radiological traceability and tissue reactions of the implants. Characterization studies have confirmed the successful modification of PEEK, resulting in radiopacity without contamination. Radiopaque PEEK derivatives (PEEK–I) demonstrated excellent biocompatibility and nontoxicity, with no inflammation occurring at the surgical site after a 20-day post-implantation observation period. SEM analysis further confirmed cellular adhesion and the compatibility of the biomaterial with biological systems. The newly synthesized PEEK–I polymer, featuring enhanced X-ray visibility and biocompatibility, can significantly advance imaging studies in medical applications. The novel biocompatible radiopaque PEEK, synthesized for the first time by our working group, will be an incredibly attractive and groundbreaking biomaterial in studies where radiological imaging is actively used, such as dental and spine surgery.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><img></picture></div></div></figure></div></div>","PeriodicalId":601,"journal":{"name":"Iranian Polymer Journal","volume":"34 5","pages":"715 - 726"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Polymer Journal","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s13726-024-01407-5","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The study aims to enhance the radiopacity of polyetheretherketone (PEEK) in medical imaging by chemically modifying it with 4-iodobenzoic acid derivatives to broaden its biomedical applications. In this regard, a radiopaque derivative of PEEK was prepared with chain modification, which makes it possible to preserve the biocompatibility properties of PEEK and also increase the polymer hydrophilicity and the number of reactive functional groups that can act as potential anchors. Synthesized radioactive polymer characterization was performed by FTIR, SEM, EDX, and X-ray analyzing techniques. The characterized radiopaque PEEK polymer was implanted under the skin and muscle of the rat. The biological response status was evaluated by observing the radiological traceability and tissue reactions of the implants. Characterization studies have confirmed the successful modification of PEEK, resulting in radiopacity without contamination. Radiopaque PEEK derivatives (PEEK–I) demonstrated excellent biocompatibility and nontoxicity, with no inflammation occurring at the surgical site after a 20-day post-implantation observation period. SEM analysis further confirmed cellular adhesion and the compatibility of the biomaterial with biological systems. The newly synthesized PEEK–I polymer, featuring enhanced X-ray visibility and biocompatibility, can significantly advance imaging studies in medical applications. The novel biocompatible radiopaque PEEK, synthesized for the first time by our working group, will be an incredibly attractive and groundbreaking biomaterial in studies where radiological imaging is actively used, such as dental and spine surgery.
期刊介绍:
Iranian Polymer Journal, a monthly peer-reviewed international journal, provides a continuous forum for the dissemination of the original research and latest advances made in science and technology of polymers, covering diverse areas of polymer synthesis, characterization, polymer physics, rubber, plastics and composites, processing and engineering, biopolymers, drug delivery systems and natural polymers to meet specific applications. Also contributions from nano-related fields are regarded especially important for its versatility in modern scientific development.