Engineering optoelectronic properties of the Pb-free perovskite FASiBr3 − XIX (X = 0, 1, 2 or 3) for photovoltaic applications: first principle analysis

IF 1.7 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
Youssef El Arfaoui, Mohammed Khenfouch, Nabil Habiballah, Simone Giusepponi
{"title":"Engineering optoelectronic properties of the Pb-free perovskite FASiBr3 − XIX (X = 0, 1, 2 or 3) for photovoltaic applications: first principle analysis","authors":"Youssef El Arfaoui,&nbsp;Mohammed Khenfouch,&nbsp;Nabil Habiballah,&nbsp;Simone Giusepponi","doi":"10.1140/epjb/s10051-025-00909-2","DOIUrl":null,"url":null,"abstract":"<div><p>Lead-free perovskites have become a potential candidate for the development of the photovoltaic field. Here, we explored the structural and optoelectronic characteristics of silicon-perovskite FASiBr<sub>3 − <i>X</i></sub>I<sub><i>X</i></sub> (<i>X</i> = 0, 1, 2 or 3) for solar device applications. Density functional theory has been applied. The band structure shows that FASiBr<sub>3</sub> FASiBr<sub>2</sub>I, FASiBrI<sub>2</sub> and FASiI<sub>3</sub> have a semiconductor nature with a direct band gap of (2.09 eV) (2.60 eV) PBE(HSE), (1.90 eV) (2.38 eV) PBE(HSE), (1.71 eV) (2.12 eV) PBE(HSE) and 1.60 eV (2.08) PBE(HSE), respectively. In addition, the studied perovskites also exhibited great optical properties including, high absorption; moreover, we showed that the substitution of Br by I in FASiBr<sub>3</sub> perovskite can considerably enhance the optical behavior. The dielectric function showed that the edge of absorption of Br-substituted I in FASiBr<sub>3</sub> perovskite was shifted towards the low energy zone (red-shift) compared to FASiBr<sub>3</sub>. As a result, FASiI<sub>3</sub> experiences greater absorption capability than its FASiBr<sub>3</sub> counterpart. These analyses indicate that FASiI3 is the best candidate for use as a Pb-free material for perovskite solar cells.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":787,"journal":{"name":"The European Physical Journal B","volume":"98 4","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjb/s10051-025-00909-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal B","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjb/s10051-025-00909-2","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

Lead-free perovskites have become a potential candidate for the development of the photovoltaic field. Here, we explored the structural and optoelectronic characteristics of silicon-perovskite FASiBr3 − XIX (X = 0, 1, 2 or 3) for solar device applications. Density functional theory has been applied. The band structure shows that FASiBr3 FASiBr2I, FASiBrI2 and FASiI3 have a semiconductor nature with a direct band gap of (2.09 eV) (2.60 eV) PBE(HSE), (1.90 eV) (2.38 eV) PBE(HSE), (1.71 eV) (2.12 eV) PBE(HSE) and 1.60 eV (2.08) PBE(HSE), respectively. In addition, the studied perovskites also exhibited great optical properties including, high absorption; moreover, we showed that the substitution of Br by I in FASiBr3 perovskite can considerably enhance the optical behavior. The dielectric function showed that the edge of absorption of Br-substituted I in FASiBr3 perovskite was shifted towards the low energy zone (red-shift) compared to FASiBr3. As a result, FASiI3 experiences greater absorption capability than its FASiBr3 counterpart. These analyses indicate that FASiI3 is the best candidate for use as a Pb-free material for perovskite solar cells.

Graphical abstract

用于光伏应用的无铅钙钛矿FASiBr3−XIX (X = 0,1,2或3)的工程光电特性:第一性原理分析
无铅钙钛矿已成为光伏领域发展的潜在候选材料。在这里,我们探索了硅钙钛矿FASiBr3−XIX (X = 0,1,2或3)的结构和光电子特性,用于太阳能器件应用。密度泛函理论已被应用。带结构表明,FASiBr3、FASiBr2I、FASiBrI2和FASiI3具有半导体性质,直接带隙分别为(2.09 eV) (2.60 eV) PBE(HSE)、(1.90 eV) (2.38 eV) PBE(HSE)、(1.71 eV) (2.12 eV) PBE(HSE)和1.60 eV (2.08) PBE(HSE)。此外,所研究的钙钛矿还表现出良好的光学性质,包括:高吸收;此外,我们发现用I取代FASiBr3钙钛矿中的Br可以显著提高其光学性能。介电函数表明,与FASiBr3相比,FASiBr3钙钛矿中br取代I的吸收边缘向低能区(红移)移动。因此,FASiI3比FASiBr3具有更强的吸收能力。这些分析表明FASiI3是钙钛矿太阳能电池无铅材料的最佳候选材料。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The European Physical Journal B
The European Physical Journal B 物理-物理:凝聚态物理
CiteScore
2.80
自引率
6.20%
发文量
184
审稿时长
5.1 months
期刊介绍: Solid State and Materials; Mesoscopic and Nanoscale Systems; Computational Methods; Statistical and Nonlinear Physics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信