Rupan Das Chakraborty, Tapan K. Pani, Surendra K. Martha
{"title":"Effect of concentration of dextrose-derived hard carbon anode on the electrochemical performance for sodium-ion batteries","authors":"Rupan Das Chakraborty, Tapan K. Pani, Surendra K. Martha","doi":"10.1007/s10008-024-06136-6","DOIUrl":null,"url":null,"abstract":"<div><p>Hard carbons (HCs) are widely used as anode materials for sodium-ion batteries due to their availability, ease of synthesis, and low cost. HCs can store Na ions between stacked sp<sup>2</sup>-layers of carbon and micropores. In this work, hard carbons are synthesized from 1 M, 2 M, 3 M, 4 M, and 5 M dextrose solutions by hydrothermal synthesis followed by high-temperature calcination at 1100 °C in an argon atmosphere. Among all hard carbons derived from different concentrations of dextrose solutions, hard carbon derived from 3 M dextrose solution delivers superior electrochemical performance compared to other hard carbons. Hard carbon derived from 3 M dextrose solution (DHC-3 M) provides an initial reversible capacity of 273 mAh g<sup>−1</sup> with a capacity retention of 82% at the end of 100 charge–discharge cycles at 30 mA g<sup>−1</sup>. Further, high-rate charge–discharge cycling at 200 mA g<sup>−1</sup> shows an initial capacity of 200 mAh g<sup>−1</sup> and retains over 61% capacity at the end of 500 cycles. The improved capacity of DHC-3 M is due to the higher d-spacing value and more disorderness, which improve the plateau region capacity due to the intercalation of Na<sup>+</sup> in the carbon matrix. Besides, 3 M dextrose-derived hard carbons are less agglomerated than other concentrations and show less charge transfer resistance before and after cycling, resulting in improved electrochemical performance.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":"29 5","pages":"1829 - 1840"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid State Electrochemistry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10008-024-06136-6","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Hard carbons (HCs) are widely used as anode materials for sodium-ion batteries due to their availability, ease of synthesis, and low cost. HCs can store Na ions between stacked sp2-layers of carbon and micropores. In this work, hard carbons are synthesized from 1 M, 2 M, 3 M, 4 M, and 5 M dextrose solutions by hydrothermal synthesis followed by high-temperature calcination at 1100 °C in an argon atmosphere. Among all hard carbons derived from different concentrations of dextrose solutions, hard carbon derived from 3 M dextrose solution delivers superior electrochemical performance compared to other hard carbons. Hard carbon derived from 3 M dextrose solution (DHC-3 M) provides an initial reversible capacity of 273 mAh g−1 with a capacity retention of 82% at the end of 100 charge–discharge cycles at 30 mA g−1. Further, high-rate charge–discharge cycling at 200 mA g−1 shows an initial capacity of 200 mAh g−1 and retains over 61% capacity at the end of 500 cycles. The improved capacity of DHC-3 M is due to the higher d-spacing value and more disorderness, which improve the plateau region capacity due to the intercalation of Na+ in the carbon matrix. Besides, 3 M dextrose-derived hard carbons are less agglomerated than other concentrations and show less charge transfer resistance before and after cycling, resulting in improved electrochemical performance.
期刊介绍:
The Journal of Solid State Electrochemistry is devoted to all aspects of solid-state chemistry and solid-state physics in electrochemistry.
The Journal of Solid State Electrochemistry publishes papers on all aspects of electrochemistry of solid compounds, including experimental and theoretical, basic and applied work. It equally publishes papers on the thermodynamics and kinetics of electrochemical reactions if at least one actively participating phase is solid. Also of interest are articles on the transport of ions and electrons in solids whenever these processes are relevant to electrochemical reactions and on the use of solid-state electrochemical reactions in the analysis of solids and their surfaces.
The journal covers solid-state electrochemistry and focusses on the following fields: mechanisms of solid-state electrochemical reactions, semiconductor electrochemistry, electrochemical batteries, accumulators and fuel cells, electrochemical mineral leaching, galvanic metal plating, electrochemical potential memory devices, solid-state electrochemical sensors, ion and electron transport in solid materials and polymers, electrocatalysis, photoelectrochemistry, corrosion of solid materials, solid-state electroanalysis, electrochemical machining of materials, electrochromism and electrochromic devices, new electrochemical solid-state synthesis.
The Journal of Solid State Electrochemistry makes the professional in research and industry aware of this swift progress and its importance for future developments and success in the above-mentioned fields.