{"title":"Deep Reinforcement Learning for Joint Time and Power Management in SWIPT-EH CIoT","authors":"Nadia Abdolkhani;Nada Abdel Khalek;Walaa Hamouda;Iyad Dayoub","doi":"10.1109/LCOMM.2025.3536182","DOIUrl":null,"url":null,"abstract":"This letter presents a novel deep reinforcement learning (DRL) approach for joint time allocation and power control in a cognitive Internet of Things (CIoT) system with simultaneous wireless information and power transfer (SWIPT). The CIoT transmitter autonomously manages energy harvesting (EH) and transmissions using a learnable time switching factor while optimizing power to enhance throughput and lifetime. The joint optimization is modeled as a Markov decision process under small-scale fading, realistic EH, and interference constraints. We develop a double deep Q-network (DDQN) enhanced with an upper confidence bound. Simulations benchmark our approach, showing superior performance over existing DRL methods.","PeriodicalId":13197,"journal":{"name":"IEEE Communications Letters","volume":"29 4","pages":"660-664"},"PeriodicalIF":3.7000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Communications Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10857304/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This letter presents a novel deep reinforcement learning (DRL) approach for joint time allocation and power control in a cognitive Internet of Things (CIoT) system with simultaneous wireless information and power transfer (SWIPT). The CIoT transmitter autonomously manages energy harvesting (EH) and transmissions using a learnable time switching factor while optimizing power to enhance throughput and lifetime. The joint optimization is modeled as a Markov decision process under small-scale fading, realistic EH, and interference constraints. We develop a double deep Q-network (DDQN) enhanced with an upper confidence bound. Simulations benchmark our approach, showing superior performance over existing DRL methods.
期刊介绍:
The IEEE Communications Letters publishes short papers in a rapid publication cycle on advances in the state-of-the-art of communication over different media and channels including wire, underground, waveguide, optical fiber, and storage channels. Both theoretical contributions (including new techniques, concepts, and analyses) and practical contributions (including system experiments and prototypes, and new applications) are encouraged. This journal focuses on the physical layer and the link layer of communication systems.