Channel Estimation in RIS-Aided Heterogeneous Wireless Networks via Federated Learning

IF 3.7 3区 计算机科学 Q2 TELECOMMUNICATIONS
Muhammad Asaad Cheema;Apoorva Chawla;Vinay Chakravarthi Gogineni;Pierluigi Salvo Rossi
{"title":"Channel Estimation in RIS-Aided Heterogeneous Wireless Networks via Federated Learning","authors":"Muhammad Asaad Cheema;Apoorva Chawla;Vinay Chakravarthi Gogineni;Pierluigi Salvo Rossi","doi":"10.1109/LCOMM.2025.3541873","DOIUrl":null,"url":null,"abstract":"Downlink channel estimation in reconfigurable intelligent surface (RIS)-assisted communication systems employing federated learning (FL) is challenging due to communication/ computational overhead, users heterogeneity, and vulnerability to malicious users. This letter proposes a novel methodology integrating principal component analysis (PCA)-based clustering with FL, tailored for heterogeneous users. The approach effectively identifies regions and users within the cell while minimizing communication/computational overhead associated with clustering, resulting in accurate, resource-efficient, and secure channel estimation. Simulation results demonstrate that the proposed FL strategy achieves estimation performance comparable to the conventional methods while significantly reducing the communication overhead, enhancing the system security, and handling heterogeneous users.","PeriodicalId":13197,"journal":{"name":"IEEE Communications Letters","volume":"29 4","pages":"709-713"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Communications Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10884956/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Downlink channel estimation in reconfigurable intelligent surface (RIS)-assisted communication systems employing federated learning (FL) is challenging due to communication/ computational overhead, users heterogeneity, and vulnerability to malicious users. This letter proposes a novel methodology integrating principal component analysis (PCA)-based clustering with FL, tailored for heterogeneous users. The approach effectively identifies regions and users within the cell while minimizing communication/computational overhead associated with clustering, resulting in accurate, resource-efficient, and secure channel estimation. Simulation results demonstrate that the proposed FL strategy achieves estimation performance comparable to the conventional methods while significantly reducing the communication overhead, enhancing the system security, and handling heterogeneous users.
基于联邦学习的ris辅助异构无线网络信道估计
在采用联合学习(FL)的可重构智能表面(RIS)辅助通信系统中,由于通信/计算开销、用户异构性以及易受恶意用户影响等原因,下行链路信道估计具有挑战性。这封信提出了一种新方法,将基于主成分分析(PCA)的聚类与联合学习(FL)结合起来,为异构用户量身定制。该方法可有效识别小区中的区域和用户,同时最大限度地减少与聚类相关的通信/计算开销,从而实现准确、资源高效和安全的信道估计。仿真结果表明,所提出的 FL 策略实现了与传统方法相当的估计性能,同时显著降低了通信开销,增强了系统安全性,并能处理异构用户。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Communications Letters
IEEE Communications Letters 工程技术-电信学
CiteScore
8.10
自引率
7.30%
发文量
590
审稿时长
2.8 months
期刊介绍: The IEEE Communications Letters publishes short papers in a rapid publication cycle on advances in the state-of-the-art of communication over different media and channels including wire, underground, waveguide, optical fiber, and storage channels. Both theoretical contributions (including new techniques, concepts, and analyses) and practical contributions (including system experiments and prototypes, and new applications) are encouraged. This journal focuses on the physical layer and the link layer of communication systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信