Influence of Secondary Phase on Elastic and Acoustic Characteristics of Magnesium Alloys of the Mg–Zn–Y–Gd System

IF 0.6 4区 材料科学 Q4 METALLURGY & METALLURGICAL ENGINEERING
I. A. Rastegaev, A. K. Khrustalev, D. L. Merson, I. I. Rastegaeva, O. V. Murav’eva, V. V. Murav’ev, A. L. Vladykin
{"title":"Influence of Secondary Phase on Elastic and Acoustic Characteristics of Magnesium Alloys of the Mg–Zn–Y–Gd System","authors":"I. A. Rastegaev,&nbsp;A. K. Khrustalev,&nbsp;D. L. Merson,&nbsp;I. I. Rastegaeva,&nbsp;O. V. Murav’eva,&nbsp;V. V. Murav’ev,&nbsp;A. L. Vladykin","doi":"10.1134/S1067821225600061","DOIUrl":null,"url":null,"abstract":"<p>The microstructural, phase, acoustic, and elastic properties of nine cast magnesium alloys with an LPSO structure (X phase) were studied within a concentration range of Y, Gd, Zn, and Zr that are promising for practical applications, considering their subsequent thermal dispersion strengthening (Y ≤ 7.6, Zn ≤ 2.78, Gd ≤ 4.9, and Zr ≤ 0.68 wt %). A comparison of the experimental data revealed that the propagation rate of longitudinal and transverse waves in the alloys decreases, while the attenuation coefficient increases proportionally to the total weight percentage of alloying elements forming the X phase. Furthermore, the elastic and acoustic properties correlate more significantly with the total weight percentage of alloying elements in the Mg alloy rather than with the atomic parameters of the phase-forming alloying elements (Y/Zn) commonly used in metallurgy. It was shown that the variation in wave propagation rate in Mg alloys with the X phase predominantly correlates with an increase in their density. At a low content of the secondary phase, wave attenuation is determined by grain size, while in the presence of a secondary phase in the form of conglomerates at grain boundaries, it is influenced by the ratio of grain size, secondary phase size, and wavelength. It was found that the parameter of the ratio of secondary phase size to wavelength, introduced by analogy with the conventional acoustic parameter of the ratio of grain size to wavelength, weakly correlates with the acoustic properties of alloys with the X phase. Additionally, there is a discrepancy between the dependences of the attenuation coefficient on grain size and wave frequency. This discrepancy may be due to the unaccounted for influence of the X phase in the form of banded insertions into α-Mg grains, as well as the method of calculating the secondary phase size, which requires further investigation.</p>","PeriodicalId":765,"journal":{"name":"Russian Journal of Non-Ferrous Metals","volume":"65 4","pages":"185 - 198"},"PeriodicalIF":0.6000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Non-Ferrous Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S1067821225600061","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

The microstructural, phase, acoustic, and elastic properties of nine cast magnesium alloys with an LPSO structure (X phase) were studied within a concentration range of Y, Gd, Zn, and Zr that are promising for practical applications, considering their subsequent thermal dispersion strengthening (Y ≤ 7.6, Zn ≤ 2.78, Gd ≤ 4.9, and Zr ≤ 0.68 wt %). A comparison of the experimental data revealed that the propagation rate of longitudinal and transverse waves in the alloys decreases, while the attenuation coefficient increases proportionally to the total weight percentage of alloying elements forming the X phase. Furthermore, the elastic and acoustic properties correlate more significantly with the total weight percentage of alloying elements in the Mg alloy rather than with the atomic parameters of the phase-forming alloying elements (Y/Zn) commonly used in metallurgy. It was shown that the variation in wave propagation rate in Mg alloys with the X phase predominantly correlates with an increase in their density. At a low content of the secondary phase, wave attenuation is determined by grain size, while in the presence of a secondary phase in the form of conglomerates at grain boundaries, it is influenced by the ratio of grain size, secondary phase size, and wavelength. It was found that the parameter of the ratio of secondary phase size to wavelength, introduced by analogy with the conventional acoustic parameter of the ratio of grain size to wavelength, weakly correlates with the acoustic properties of alloys with the X phase. Additionally, there is a discrepancy between the dependences of the attenuation coefficient on grain size and wave frequency. This discrepancy may be due to the unaccounted for influence of the X phase in the form of banded insertions into α-Mg grains, as well as the method of calculating the secondary phase size, which requires further investigation.

二次相对Mg-Zn-Y-Gd体系镁合金弹性和声学特性的影响
在具有实际应用前景的Y、Gd、Zn和Zr浓度范围内(Y≤7.6,Zn≤2.78,Gd≤4.9,Zr≤0.68 wt %),研究了9种具有LPSO结构(X相)的铸造镁合金的显微组织、相、声学和弹性性能。对比实验数据发现,纵波和横波在合金中的传播速率降低,而衰减系数随合金元素形成X相的总重量百分比成比例地增大。此外,弹性和声学性能与镁合金中合金元素的总重量百分比的相关性更显著,而不是与冶金中常用的相形成合金元素(Y/Zn)的原子参数相关。结果表明,镁合金中X相波传播速率的变化主要与合金密度的增加有关。当二次相含量较低时,波的衰减由晶粒尺寸决定,而当二次相在晶界处以砾岩形式存在时,波的衰减受晶粒尺寸、二次相尺寸和波长的比值影响。通过类比常规的晶粒尺寸与波长之比声学参数,发现二次相尺寸与波长之比参数与含X相合金的声学性能相关性较弱。此外,衰减系数对晶粒尺寸和波频的依赖关系也存在差异。这种差异可能是由于未解释的X相以带状插入形式进入α-Mg晶粒的影响,以及计算二次相尺寸的方法,这需要进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Russian Journal of Non-Ferrous Metals
Russian Journal of Non-Ferrous Metals METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
1.90
自引率
12.50%
发文量
59
审稿时长
3 months
期刊介绍: Russian Journal of Non-Ferrous Metals is a journal the main goal of which is to achieve new knowledge in the following topics: extraction metallurgy, hydro- and pirometallurgy, casting, plastic deformation, metallography and heat treatment, powder metallurgy and composites, self-propagating high-temperature synthesis, surface engineering and advanced protected coatings, environments, and energy capacity in non-ferrous metallurgy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信