{"title":"Conformal freeze-in from neutrino portal","authors":"Sungwoo Hong, Maxim Perelstein, Taewook Youn","doi":"10.1007/JHEP04(2025)089","DOIUrl":null,"url":null,"abstract":"<p>We study a scenario where a dark sector, described by a Conformal Field Theory (CFT), interacts with the Standard Model through the neutrino portal. In this setup, conformal invariance breaks below the electroweak scale, causing the theory to transition into a confined (hadronic) phase. One of the hadronic excitations in this phase can act as dark matter. In the “Conformal Freeze-In” cosmological framework, the dark sector is populated through interactions with the Standard Model at temperatures where it retains approximate conformal symmetry. The dark matter relic density depends on the CFT parameters, such as the dimension of the operator coupled to the Standard Model. We demonstrate that this model can reproduce the DM relic density and meet all observational constraints. The same neutrino portal interaction may also generate masses for the active neutrinos. The dark matter candidate could either be a pseudo-Goldstone boson (PGB) or a composite fermion with the quantum numbers of a sterile neutrino. In the latter case, the model is consistent with the current X-ray constraints, and may be detectable with future X-ray observations.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 4","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP04(2025)089.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP04(2025)089","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
We study a scenario where a dark sector, described by a Conformal Field Theory (CFT), interacts with the Standard Model through the neutrino portal. In this setup, conformal invariance breaks below the electroweak scale, causing the theory to transition into a confined (hadronic) phase. One of the hadronic excitations in this phase can act as dark matter. In the “Conformal Freeze-In” cosmological framework, the dark sector is populated through interactions with the Standard Model at temperatures where it retains approximate conformal symmetry. The dark matter relic density depends on the CFT parameters, such as the dimension of the operator coupled to the Standard Model. We demonstrate that this model can reproduce the DM relic density and meet all observational constraints. The same neutrino portal interaction may also generate masses for the active neutrinos. The dark matter candidate could either be a pseudo-Goldstone boson (PGB) or a composite fermion with the quantum numbers of a sterile neutrino. In the latter case, the model is consistent with the current X-ray constraints, and may be detectable with future X-ray observations.
我们研究了由共形场理论(CFT)描述的暗部门通过中微子门户与标准模型相互作用的情景。在这种情况下,共形不变性会在电弱尺度以下被打破,导致理论过渡到一个约束(强子)阶段。在这一阶段,强子激发之一可以充当暗物质。在 "共形冻结 "宇宙学框架中,暗物质扇区是通过与标准模型的相互作用在其保持近似共形对称性的温度下填充的。暗物质遗迹密度取决于 CFT 参数,如与标准模型耦合的算子维度。我们证明这个模型可以重现暗物质遗迹密度,并满足所有观测约束。同样的中微子门相互作用也可能产生活动中微子的质量。暗物质候选者可以是伪金石玻色子(PGB),也可以是具有不育中微子量子数的复合费米子。在后一种情况下,该模型与当前的 X 射线约束相一致,并可能在未来的 X 射线观测中被探测到。
期刊介绍:
The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal.
Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles.
JHEP presently encompasses the following areas of theoretical and experimental physics:
Collider Physics
Underground and Large Array Physics
Quantum Field Theory
Gauge Field Theories
Symmetries
String and Brane Theory
General Relativity and Gravitation
Supersymmetry
Mathematical Methods of Physics
Mostly Solvable Models
Astroparticles
Statistical Field Theories
Mostly Weak Interactions
Mostly Strong Interactions
Quantum Field Theory (phenomenology)
Strings and Branes
Phenomenological Aspects of Supersymmetry
Mostly Strong Interactions (phenomenology).