Optimal Cut Layer Bounds for Split Learning

IF 3.7 3区 计算机科学 Q2 TELECOMMUNICATIONS
Matea Marinova;Marija Poposka;Zoran Hadzi-Velkov;Valentin Rakovic
{"title":"Optimal Cut Layer Bounds for Split Learning","authors":"Matea Marinova;Marija Poposka;Zoran Hadzi-Velkov;Valentin Rakovic","doi":"10.1109/LCOMM.2025.3542541","DOIUrl":null,"url":null,"abstract":"Split learning (SL) is a distributed learning method where a deep learning model is partitioned between the client and server, aiming to optimize the training process. A key challenge in split learning is selecting the cut layer to minimize energy consumption while considering both computational and communication overheads. In this letter, we address this challenge within the context of a wireless system with multiple clients and a central server. We introduce a pruning-based cut layer selection scheme that effectively reduces the energy consumption for each client. Our approach leverages analytical bounds for optimal cut layer location, which we derive and validate against state-of-the-art SL benchmark schemes, demonstrating the high efficiency of our proposed method.","PeriodicalId":13197,"journal":{"name":"IEEE Communications Letters","volume":"29 4","pages":"749-753"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Communications Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10891047/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Split learning (SL) is a distributed learning method where a deep learning model is partitioned between the client and server, aiming to optimize the training process. A key challenge in split learning is selecting the cut layer to minimize energy consumption while considering both computational and communication overheads. In this letter, we address this challenge within the context of a wireless system with multiple clients and a central server. We introduce a pruning-based cut layer selection scheme that effectively reduces the energy consumption for each client. Our approach leverages analytical bounds for optimal cut layer location, which we derive and validate against state-of-the-art SL benchmark schemes, demonstrating the high efficiency of our proposed method.
分割学习(SL)是一种分布式学习方法,在这种方法中,深度学习模型在客户端和服务器之间分割,目的是优化训练过程。分层学习的一个关键挑战是选择切割层,在考虑计算和通信开销的同时最大限度地降低能耗。在这封信中,我们将在具有多个客户端和一个中央服务器的无线系统中解决这一难题。我们引入了一种基于剪枝的剪切层选择方案,可有效降低每个客户端的能耗。我们的方法利用了最佳剪切层位置的分析边界,我们推导出了这些边界,并与最先进的 SL 基准方案进行了验证,证明了我们所提方法的高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Communications Letters
IEEE Communications Letters 工程技术-电信学
CiteScore
8.10
自引率
7.30%
发文量
590
审稿时长
2.8 months
期刊介绍: The IEEE Communications Letters publishes short papers in a rapid publication cycle on advances in the state-of-the-art of communication over different media and channels including wire, underground, waveguide, optical fiber, and storage channels. Both theoretical contributions (including new techniques, concepts, and analyses) and practical contributions (including system experiments and prototypes, and new applications) are encouraged. This journal focuses on the physical layer and the link layer of communication systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信